Gametophytic Gene Expression in Embryo-lethal Mutants of Arabidopsis thaliana

  • David W. Meinke
  • Ann D. Baus


The genetic control of embryo development in higher plants has been approached in part through the isolation and characterization of embryo-lethal mutants (Meinke 1986). The most extensive studies have dealt with defective kernel mutants of corn (Sheridan and Neuffer 1982), embryo-lethal mutants of Arabidopsis (Müller 1963; Meinke 1985), and variant cell lines of carrot unable to complete somatic embryogenesis in vitro (Breton and Sung 1982). Arabidopsis thaliana (Cruciferae) has been used as a model plant system for various studies in developmental and molecular genetics because it produces many seeds per plant and has a short generation time, low chromosome number, well-characterized mutants (Rédei 1975), an established linkage map (Koornneef et al. 1983), and an unusually small genome with little repetitive DNA (Leutwiler et al. 1984). Recessive embryolethal mutants of Arabidopsis isolated following EMS seed mutagenesis have been shown previously to differ with respect to the stage of developmental arrest, the color of arrested embryos and aborted seeds, the percentage and distribution of aborted seeds in heterozygous siliques, the extent of abnormal embryo development, the response of mutant embryos in culture, the development of homozygous mutant plants, the formation of protein and lipid bodies, and the accumulation of seed storage proteins (Meinke and Sussex 1979a,b; Meinke 1982, 1985; Meinke et al. 1985; Marsden and Meinke 1985).


Somatic Embryogenesis Mutant Allele Seed Storage Protein Abort Seed Pollen Tube Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breton A, Sung ZR (1982) Temperature-sensitive carrot variants impaired in somatic embryogenesis. Dev Biol 90: 58–66.PubMedCrossRefGoogle Scholar
  2. Browse J, McCourt P, Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765.PubMedCrossRefGoogle Scholar
  3. Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74: 265–272.Google Scholar
  4. Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194: 15–23.CrossRefGoogle Scholar
  5. Marsden MPF, Meinke DW (1985) Abnormal development of the suspensor in an embryo-lethal mutant of Arabidopsis thaliana. Amer J Bot (in press).Google Scholar
  6. Meinke DW (1982) Embryo-lethal mutants of Arabidopsis thaliana: Evidence for gametophytic expression of the mutant genes. Theor Appl Genet 63: 381–386.CrossRefGoogle Scholar
  7. Meinke DW (1985) Embryo-lethal mutants of Arabidopsis thaliana: Analysis of mutants with a wide range of lethal phases. Theor Appl Genet 69: 543–552.CrossRefGoogle Scholar
  8. Meinke DW (1986) Use of embryo-lethal mutants to study plant embryo development. In: Miflin BJ (ed) Oxford Surveys of Plant Molecular and Cell Biology, Vol 3. Oxford University Press (manuscript in preparation).Google Scholar
  9. Meinke DW, Franzmann L, Baus A. Patton D, Weldon R, Heath JD, Monnot C (1985) Embryo-lethal mutants of Arabidopsis thaliana. In: Freeling M (ed) Plant Genetics, UCLA Symposia on Molecular and Cellular Biology, Vol 35. Alan Liss, New York (in press)Google Scholar
  10. Meinke DW, Sussex IM (1979a) Embryo-lethal mutants of Arabidopsis thaliana: A model system for genetic analysis of plant embryo development. Dev Biol 72: 50–61.Google Scholar
  11. Meinke DW, Sussex IM (1979b) Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Dev Biol 72: 62–72.CrossRefGoogle Scholar
  12. Müller AJ (1963) Embryonentest zum Nachweis rezessiver Letalfaktoren be Arabidopsis thaliana. Biol Zentralbl 82: 133–163.Google Scholar
  13. Ottaviano E, Sari-Gorla M, Mulcahy DL (1980) Pollen tube growth rates in Zea mays: implications for genetic improvement of crops. Science 210: 437–438.PubMedCrossRefGoogle Scholar
  14. Rédei GP (1975) Arabidopsis as a genetic tool. Ann Rev Genet 9: 111–127.PubMedCrossRefGoogle Scholar
  15. Sheridan WF, Neuffer MG (1982) Maize developmental mutants: Embryos unable to form leaf primordia. J Hered 73: 318–329.Google Scholar
  16. Somerville SC, Ogren WL (1983) An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci (USA) 80: 1290–1294.CrossRefGoogle Scholar
  17. Willing RP, Mascarenhas JP (1984) Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol 75: 865–868.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • David W. Meinke
  • Ann D. Baus
    • 1
  1. 1.Department of Botany and MicrobiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations