Skip to main content

Introduction and General Overview

  • Chapter
DNA Methylation

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

It has become increasingly clear that postreplication modification of DNA is relevant to many fields that at first glance may not seem related. Some knowledge of DNA modification is necessary to understand, to teach, or to experiment in the fields of bacterial genetics, prokaryotic gene regulation, recombinant DNA and molecular cloning, eukaryotic gene regulation, developmental biology, and (probably) cancer. During the last 10 years, a large body of information has been accumulated on enzymatic DNA modification, both in prokaryotes and eukaryotes. We thought it might be useful to bring all of this information together in one book, because the field of DNA methylation has become so large that searching the original literature has become a formidable task. In the past, cross-fertilization between studies on prokaryotes and eukaryotes has occurred in the methylation field. We hope this book will stimulate some additional cross-fertilization. No attempt will be made to discuss the evolution of the DNA methylation field from an historical perspective. However, to a certain extent, this is done in some of the chapters; also, the following list of recent reviews and some earlier key papers will serve to chronicle the development of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber W, Linn S: DNA modification and restriction. Ann Rev Biochem 1969; 38: 467–500.

    Article  PubMed  CAS  Google Scholar 

  • Arber W: DNA modification and restriction. Prog Nucleic Acids Res Mol Biol 1974; 14: 1–37.

    Article  CAS  Google Scholar 

  • Bestor TH, Ingram VM: Two DNA methyltransferases from murine erythroleukemia cells: Purification sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 1983, 80: 5559–5563.

    Article  PubMed  CAS  Google Scholar 

  • Bird AP: DNA methylation. II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol 1978; 118: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH, Adams RLP: Eukaryotic DNA methylation. Trends Biochem Sci, 1980; 5: 294–297.

    Article  CAS  Google Scholar 

  • Carr BI, Reilly JG, Smith SS, Riggs AD: The tumorigenicity of 5 azacytidine in the male Fischer rat (Unpublished data, 1984).

    Google Scholar 

  • Compere SJ, Palmiter RD: DNA methylation controls the inducibility of the mouse metallothionein-I gene in lymphoid cells. Cell 1981; 25: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W: A regulatory signal in eukaryotic gene expression. J Gen Virol, 1981; 57: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W: DNA methylation and gene activity. Ann Rev Biochem 1983;52:93–124.

    Article  PubMed  CAS  Google Scholar 

  • Drahovsky D, Boehm TLJ: Enzymatic DNA methylation in higher eukaryotes. Intern JBiochem, 1980; 12: 523–528.

    Article  CAS  Google Scholar 

  • Dunn DB, Smith JD: The occurrence of 6 methylaminopurine in deoxyribonucleic acids. Biochem J, 1958; 68: 627–636.

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Wang RYH: 5 methylcytosine in eukaryotic DNA. Science, 1981; 212: 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  • Gold M, Hurwitz J, Andres M: The enzymatic methylation of RNA and DNA II. On the species specificity of the methylation enzymes. Proc. Natl Acad Sci USA, 1963; 50: 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A: Substrate and sequence specificity of a eukaryotic DNA methylase. Nature, 1982; 295: 620–622.

    Article  PubMed  CAS  Google Scholar 

  • Hall RH: The Modified Nucleosides in Nucleic Acids. New York, Columbia University Press, 1971.

    Google Scholar 

  • Harris, M: Induction of thymidine kinase in Enzyme-deficient Chinese hamster cells. Cell 1982; 19: 483–492.

    Article  Google Scholar 

  • Hattman S, DNA Methylation in The Enzymes 14 in Boyer PD (ed): New York and London, Academic Press, 1981;14:517–547.

    Google Scholar 

  • Holliday R, Pugh JE: DNA modification mechanisms and gene activity during development. Science, 1975; 187: 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss RD: The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J Biol Chem 1948; 175: 315–332.

    PubMed  CAS  Google Scholar 

  • Ivarie RD, Schachter BS, O’Farrell PH: The level of expression of the rat growth hormone gene in liver tumor cells is at least eight orders of magnitude less than that in anterior pituitary cells. Mol Cell Biol 1983; 3: 1460–1467.

    PubMed  CAS  Google Scholar 

  • Kalousek F, Morris NR: Deoxyribonucleic acid methylase activity in rat spleen. J Biol Chem 1968; 243: 2440–2443.

    PubMed  CAS  Google Scholar 

  • Kerbel RS, Frost P, Liteplo R, et al.: Induction of high frequency heritable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J Cell Physiol (in press, 1984).

    Google Scholar 

  • Landlph, JR, Jones PA: Mutagenieity of 5-azacytidine and related nucleosides in C3H/10% C18 and V79 cells. Cancer Res 1982, 42: 817–823.

    Google Scholar 

  • Naveh-Many T, Cedar H: Active gene sequences are undermethylated. Proc Natl Acad Sci (USA) 1981; 78: 4246–4250.

    Article  CAS  Google Scholar 

  • Olsson L, Forschhammer J: Induction of the metastatic phenotype in a mouse tumor model by 5 azacytidine. Proc Natl Acad Sci (USA), (in press, 1984)

    Google Scholar 

  • Razin A, Riggs AD: DNA methylation and gene function. Science 1980; 210: 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Razin A, Friedman J: DNA methylation and its possible biological roles. Prog Nucleic Acids Res and Mol Biol 1981; 25: 33–52.

    Article  CAS  Google Scholar 

  • Razin A, Cedar H: DNA methylation in eukaryotic cells. Intern Rev Cytobiol (in press, 1984).

    Google Scholar 

  • Riggs, AD: X inactivation, differentiation and DNA methylation. Cytogenet Cell Genet 1975; 14: 9–11.

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Jones P: 5-methylcytosine, gene regulation and cancer. Adv Cancer Res, 1983; 40: 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Smith SS: DNA cytosine methylation: a new mechanism in somatic heredity, in: DNA Recombinant Technology, vol. 2. Boca Raton, Florida, CRC Press, Inc., (in press, 1983).

    Google Scholar 

  • Riggs AD, Singer-Sam J, Keith D, Carr BI:DNA methylation, X-inactivation and Cancer. 1984 Miami Winter Symposium: Human Genetic Disorders. ICSV Press (in press, 1984b).

    Google Scholar 

  • Scarano E: The control of gene function in cell differentiation and in embryogenesis. Adv Cytopharmacol 1971; 1: 13–23.

    PubMed  CAS  Google Scholar 

  • Sheid B, Srinivasan PR, Borek E: Deoxyribonucleic acid methylase of mammalian tissues. Biochemistry, 1968; 7: 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Singer J, Robert-Ems J, Riggs AD: Methylation of mouse liver DNA studied by means of the restriction enzymes MspI and HpaII. Science 1979; 203: 1019–1023.

    Article  PubMed  CAS  Google Scholar 

  • Sinsheimer RL. The action of pancreatic deoxyribonuclease. II. Isometric dinucleotides. J Biol Chem 1955; 215: 579–583.

    PubMed  CAS  Google Scholar 

  • Srinivasan PR, Borek E: Enzymatic alteration of Nucleic acids structure. Enzymes put finishing touches, characteristics of each species on RNA and DNA by insertion of methyl groups. Science 1964; 145: 548–553.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA: Multiple new phenotypes introduced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 1979; 17: 771–779.

    Article  PubMed  CAS  Google Scholar 

  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A: The absence of detectable meth- ylated bases in Drosophila melanogaster DNA, FEBS Lett 1982; 146: 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Wyat GR: Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J, 1951; 48: 581–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Razin, A., Cedar, H., Riggs, A.D. (1984). Introduction and General Overview. In: Razin, A., Cedar, H., Riggs, A.D. (eds) DNA Methylation. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8519-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8519-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8521-9

  • Online ISBN: 978-1-4613-8519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics