Some Non-Uniform Large Deviation Results

Part of the Universitext book series (UTX)


Thus far we have a quite satisfactory theory of large deviations for Markov processes under the assumption (6.1), in case (D), or (6.8), in case (C). Unfortunately, when E is not compact, such an assumption will not be satisfied, except in very special situations (e.g. the Sanov theorem). For example, let E = R1 and P(t,x,dy) = g(1-e-2t,y-e-tx)dy, where g(s, ξ) = (2πs)-1/2 exp(-ξ2/2s). Clearly, the associated process (i.e. the Ornstein-Uhlenbeck process) has strong ergodic properties and one ought to be able to study the large deviation theory. At the same time, it is equally clear that P(t,x,•) fails to satisfy (6.8), and therefore the theory developed in section 6) is not applicable. Of course, the reason why section 6) cannot handle this process is clear; namely: when section 6) applies, the resulting large deviation principle is uniform, whereas one should not expect a uniform principle to hold for the Ornstein-Uhlenbeck process. Indeed, one can hope for uniform large deviation principles only in the presence of uniform ergodicity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations