Scale-Dependent Ocean Wave Turbulence

  • Roman E. Glazman
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 85)

Abstract

Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum and, possibly, other conserved integrals. In the ocean, wave turbulence occurs on scales from capillary ripples and to those of baroclinic inertia-gravity and Rossby waves. In general, oceanic wave motions are characterized by rather complicated dispersion laws containing characteristic scales such as, for instance, the Rossby radius of deformation. The resulting absence of scale invariance makes many problems of wave turbulence intractable by standard, small-perturbation-based techniques. As a result, present theoretical understanding has been limited to short- and long-wave asymptotic regimes (Zakharov et al., 1992). Another, more fundamental limitation of the small perturbation theories is the assumption that the wave amplitude be small in relation to the wavelength. Thus, rare (and highly intermittent) events of appearance of the strongly nonlinear wavelets are disregarded at the outset. A number of laboratory and field measurements reveal rather peculiar wave spectra which cannot be explained by scale-invariant and/or weak-turbulence theories. The peculiarities include multiple breaks of power laws and saturation of the otherwise monotonous dependence of wave spectra on external forcing (Jähne and Riemer, 1990; Hwang et al, 1993; Hara et al., 1994; LeTraon et al., 1990).

Keywords

Microwave Attenuation Radar Stratification Triad 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Donelan, M.A., J. Hamilton, and W.H. Hui, Directional spectra of wind-generated waves, Phil. Trans. R. Soc. London, A 315, 509–562 (1985).CrossRefGoogle Scholar
  2. [2]
    Falkovich, G.E. and S.B. Medvedev, Kolmogorov-like spectrum for turbulence of inertial-gravity waves, Europhys. Let. 19 (4), 279–284, (1992).CrossRefGoogle Scholar
  3. [3]
    Forristall, Z., Measurements of a saturated range in ocean wave spectra, J. Geophys. Res., 86, 8075–8084 (1981).CrossRefGoogle Scholar
  4. [4]
    Frisch, U., Sulem, P.-L. & Nelkin, M., A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech., 87, 719–736 (1978).CrossRefGoogle Scholar
  5. [5]
    Fu, L.-L., On the wavenumber spectrum of oceanic mesoscale variability observed by the Seasat altimeter, J. Geophys. Res., 88 (C7), 4331–4341 (1983).CrossRefGoogle Scholar
  6. [6]
    Gaspar, P. and C. Wunsch, Estimates from altimeter data of baroclinic Rossby waves in the Northwestern Atlantic Ocean, Jour. Phys. Oceanogr., 19, 1821–1844 (1989).CrossRefGoogle Scholar
  7. [7]
    Gill, A.E., Atmosphere-Ocean Dynamics, Academic Press, New York, 662 pp. (1982).Google Scholar
  8. [8]
    Glazman, R.E., Multiwave interaction theory for wind-generated surface gravity waves, Journ. Fluid Mech., vol. 243, 623–635 (1992).CrossRefGoogle Scholar
  9. [9]
    Glazman, R.E., A cascade model of wave turbulence with applications to surface gravity and capillary waves, Fractals, 1 (3), 513–520 (1993).CrossRefGoogle Scholar
  10. [10]
    Glazman, R.E., Surface gravity waves at equilibrium with a steady wind, J. Geophys. Res. 99 (C3), 5249–5262 (1994).CrossRefGoogle Scholar
  11. [11]
    Glazman, R.E., 1995(a). A simple theory of capillary-gravity wave turbulence, J. Fluid Mech., vol. 293, 25–34, (1995a).CrossRefGoogle Scholar
  12. [12]
    Glazman, R.E., Spectra of baroclinic inertia-gravity wave turbulence, Journ. Phys. Oceanogr., 26 (7), 1256–1265, (1996).CrossRefGoogle Scholar
  13. [13]
    Gordon, A.L. and T.N. Baker, Ocean transients as observed by Geos-3 coincident orbits, J. Geophys. Res., 85 (C1), 502–506, (1980).CrossRefGoogle Scholar
  14. [14]
    Grose, P.L., K.L. Warsh and M. Garstang, Dispersion relations and wave shapes, J. Geophys. Res., 3902–3906 (1972).Google Scholar
  15. [15]
    Hara, T., E.J. Bock, and D. Lyzenga, In situ measurements of capillary-gravity wave spectra using a scanning laser slope gauge and microwave radars, J. Geophys. Res., 99(C6), 12593–12602 (1994).CrossRefGoogle Scholar
  16. [16]
    Hwang, P.A., Trizna, and J. Wu, Spatial measurements of short wind waves using a scanning slope sensor, Dyn. Atm. and Oceans 20, 1–23, (1993).CrossRefGoogle Scholar
  17. [17]
    Kahma, K.K., A study of the growth of the wave spectrum with fetch, J. Phys. Oceanogr., 11, 1503–1515 (1981).CrossRefGoogle Scholar
  18. [18]
    Kraichnan, R.H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (7), 1417–1423, (1967).CrossRefGoogle Scholar
  19. [19]
    Jähne, B. and K.S. Riemer, Two-dimensional wave number spectra of small-scale water surface waves, Journ. Geophys. Res., 95 (C7), 11531–11546 (1990).CrossRefGoogle Scholar
  20. [20]
    Larraza, A., S.L. Garrett, and S. Putterman, Dispersion relations for gravity waves in a deep fluid: Second sound in a stormy sea, Phys. Rev. A 41 (6), 3144–3155 (1990).CrossRefGoogle Scholar
  21. [21]
    LeBlond, P.H. and L.A. Mysak, Waves In The Ocean, Elsivier, New York, 602 pp. (1978).Google Scholar
  22. [22]
    Le Traon, P.Y., M.C. Rouquet and Boissier, Spatial scales of mesoscale variability in the north Atlantic as deduced from Geosat data, J. Geophys. Res., 95 (C11), 20267–20285 (1990).CrossRefGoogle Scholar
  23. [23]
    Le Traon, P.Y., J. Stum, J. Dorandeu, and P. Gaspar, Global statistical analysis of Topex and Poseidon data, J. Geophys. Res., 99 (C12), 24619–24631 (1994).CrossRefGoogle Scholar
  24. [24]
    Phillips, O.M., The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., 4, 426–434 (1958).CrossRefGoogle Scholar
  25. [25]
    Phillips, O.M., The Dynamics of the Upper Ocean, Cambridge Univ. Press, New York, 336 pp. (1977).Google Scholar
  26. [26]
    Phillips, O. M., Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J.Fluid Mech., 156, 505–531 (1985).CrossRefGoogle Scholar
  27. [27]
    Pierson,W.J. and L. Moskowitz, A proposed spectral model for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii, J. Geophys. Res., 69, 5181–5190 (1964).CrossRefGoogle Scholar
  28. [28]
    Pierson,W.J., Comment, J. Geophys. Res., 96 (C3), 4973–4977 (1991).CrossRefGoogle Scholar
  29. [29]
    Toba, Y., Local balance in the air-sea boundary processes, III, On the spectrum of wind waves, J. Oceanogr. Soc. Jpn, 29, 209–220 (1973).CrossRefGoogle Scholar
  30. [30]
    Wunsch, C. and D. Stammer, The global frequency-wavenumber spectrum of oceanic variability estimated from Topex/Poseidon altimeter measurements, J. Geophys. Res. (Oceans). In press (1995).Google Scholar
  31. [31]
    Zakharov, V.E., Kolmogorov spectra in weak turbulence problems, Handbook of Plasma Physics, Eds. M.N. Rosenbluth and R.Z. Sagdeev. Chapter 5.1. Elsevier Science Publishers, 4–36 (1984).Google Scholar
  32. [33]
    Zakharov, V.E. and N.N. Filonenko, The energy spectrum for stochastic oscillation of a fluid’s surface, Doklady Academii Nauk S.S.S.R., 170(6), 1292–1295, (in Russian) (1966).Google Scholar
  33. [33]
    Zakharov, V.E. and N.N. Filonenko, Weak turbulence of capillary waves, J. Appl. Math. Tech. Physics, No. 4, 506–515 (1967).Google Scholar
  34. [34]
    Zakharov, V.E. and M.M. Zaslayskii, The kinetic equation and Kolmogorov spectra in the weak turbulence theory of wind waves, Izvestiya, Atmospheric and Oceanic Physics (English Translation), 18 (9), 747–753 (1982).Google Scholar
  35. [35]
    Zakharov, V.E., V.S. L’vov and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Verlag, Berlin, 264 pp. (1992).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Roman E. Glazman
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations