Advertisement

Finite Dimensions

  • Karl E. Gustafson
  • Duggirala K. M. Rao
Part of the Universitext book series (UTX)

Abstract

The theory of numerical range in finite-dimensional spaces is very rich and varied. In fact, a lot of recent research has been focused on the numerical range, and its variations, in finite dimensions. Avoiding the evidently impossible task of doing justice to all of the work done in this field, we attempt to present a representative selection and hope that it covers all the basic material.

Keywords

Convex Hull Matrix Norm Maximum Eigenvalue Finite Dimension Numerical Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

Notes and References for Section 5.1

  1. C. R. Johnson (1976). “Normality and the Numerical Range,” Lin. Alg. Appl. 15, 89–94.MATHCrossRefGoogle Scholar

Notes and References for Section 5.2

  1. S. Gersgorin (1931). “über die Abrenzung der Eigenwerte einer Matrix,” Izv. Akad. Nauk SSSR (Ser. Mat.) 7, 749–754.Google Scholar
  2. F. Bauer (1968). “Fields of Values and Gershgorin Disks,” Numerische Math. 12, 91–95.MATHCrossRefGoogle Scholar
  3. C. R. Johnson (1973). “A Gersgorin inclusion set for the field of values of a finite matrix,” Proc. Amer. Math. Soc. 41, 57–60.MathSciNetMATHGoogle Scholar
  4. A. I. Mees and D. P. Atherton (1979). “Domains Containing the Field of Values of a Matrix,” Lin. Alg. Appl. 26, 289–296.MathSciNetMATHCrossRefGoogle Scholar
  5. V. N. Solov’ev (1983). “A Generalization of Gersgorin’s Theorem,” Izv. Akad. Nauk. SSSR Ser. Mat. 47, 1285–1302; English translation in Math. USSR Izv. 23 (1984)Google Scholar
  6. A. A. Abdurakmanov (1988). “The Geometry of the Hausdorff Domain in Localization Problems for the Spectrum of Arbitrary Matrices,” Math. USSR Sbornik. 59, 39–51.CrossRefGoogle Scholar
  7. R. A. Brualdi and S. Mellendorf (1993). “Regions in the Complex Plane Containing the Eigenvalues of a Matrix,” Amer. Math. Monthly 101, 975–985.MathSciNetCrossRefGoogle Scholar

Notes and References for Section 5.3

  1. M. Marcus and B. N. Shure (1979). “The Numerical Range of Certain 0, 1-Matrices,” Lin. and Multilin. Alg. 7, 111–120.MathSciNetMATHCrossRefGoogle Scholar
  2. K. R. Davidson and J. A. R. Holbrook (1988). “Numerical Radii of Zero—One Matrices,” Michigan Math. J. 35, 261–267.MathSciNetMATHCrossRefGoogle Scholar
  3. A. A. Abdurakmanov (1988). “The Geometry of the Hausdorff Domain in Localization Problems for the Spectrum of Arbitrary Matrices,” Math. USSR Sbornik. 59, 39–51.CrossRefGoogle Scholar
  4. C. Johnson (1974). “Gershgorin Sets and the Field of Values,” J. Math. Anal. Appl. 45, 416–419.MathSciNetMATHCrossRefGoogle Scholar
  5. C. R. Johnson, I. M. Spitkovsky and S. Gottlieb (1994). “Inequalities Involving the Numerical Radius,” Linear and Multilinear Algebra 37, 1324.MathSciNetGoogle Scholar

Notes and References for Section 5.4

  1. J. Schur (1911). “Bemerkungen zur Theorie der Beschränkten Bilinearformen mit Unendlich vielen Veränderlichen,” J. Reine Angew. Math. 140, 1–28.MATHCrossRefGoogle Scholar
  2. R. A. Horn (1990). “The Hadamard Product,” Proc. Symposia in Appl. Math. 40, 87–120.MathSciNetGoogle Scholar
  3. T. Ando, R. A. Horn and C. R. Johnson (1987). “The Singular Values of a Hadamard Product: A Basic Inequality,” Lin. Multilin. Alg. 21, 345–365.MathSciNetMATHCrossRefGoogle Scholar

Notes and References for Section 5.5

  1. C. K. Li (1994). “C-Numerical Ranges and C-Numerical Radii,” Lin. Multilin. Alg. 37, 51–82.MATHCrossRefGoogle Scholar
  2. M. Goldberg (1979). “On Certain Finite Dimensional Numerical Ranges and Numerical Radii,” Lin. Multilin. Alg. 7, 329–342.MATHCrossRefGoogle Scholar
  3. M. Goldberg and E. G. Straus (1979). “Norm Properties of C-Numerical Radii,” Lin. Alg. Appl. 24, 113–131.MathSciNetMATHCrossRefGoogle Scholar
  4. N. Bebiano and J. da Providencia (1994). “Some Geometrical Properties of the Numerical Range of a Normal Matrix,” Lin. Multilin. Alg. 37, 83–92.MATHCrossRefGoogle Scholar
  5. M. Goldberg and E. G. Straus (1977). “Elementary Inclusion Relations for Generalized Numerical Ranges,” Lin. Alg. Appl. 18, 11–24.MathSciNetCrossRefGoogle Scholar
  6. R. Westwick (1975). “A Theorem on Numerical Range,” Lin. Multilin. Alg. 2, 311–315.MathSciNetCrossRefGoogle Scholar
  7. Y. T. Poon (1980). “Another Proof of a Result of Westwick,” Lin. Multilin. Alg. 9, 35–37.MathSciNetMATHCrossRefGoogle Scholar
  8. N. K. Tsing (1981). “On the Shape of the Generalized Numerical Range,” Lin. Multilin. Alg. 10, 173–182.MathSciNetMATHCrossRefGoogle Scholar
  9. M. S. Jones (1991), “A Note on the Shape of the Generalized C-Numerical Range,” Linear and Multilinear Algebra 31, 81–84.CrossRefGoogle Scholar
  10. G. Hughes (1990). “A Note on the Shape of the Generalized Numerical Range,” Linear and Multilinear Algebra, 26, 43–47.MathSciNetMATHCrossRefGoogle Scholar
  11. N. K. Tsing and W. S. Cheung (1996). “Star-Shapedness of the Generalized Numerical Ranges,” in Abstracts 3rd Workshop on Numerical Ranges and Numerical Radii ( T. Ando and K. Okubo, eds.), Sapporo, Japan.Google Scholar
  12. M. N. Spijker (1993). “Numerical Ranges and Stability Estimates,” Appl Num. Math. 13, 241–249.MathSciNetMATHCrossRefGoogle Scholar
  13. H. W. J. Lenferink and M. N. Spijker (1990). “A Generalization of the Numerical Range of a Matrix,” Lin. Alg. Appl. 140, 251–266.MathSciNetMATHCrossRefGoogle Scholar
  14. J. Stampfli (1970). “The Norm of a Derivation,” Pacific Journal of Math. 33, 737–747.MathSciNetMATHGoogle Scholar
  15. J. Kyle (1977). “Wb is Convex,” Pacific Journal of Math. 72, 483–485.MathSciNetGoogle Scholar
  16. K. Das, S. Mazumdar and B. Sims (1987). “Restricted Numerical Range and Weak Convergence on the Boundary of the Numerical Range,” J. Math. Phys. Sci. 21, 35–41.MathSciNetMATHGoogle Scholar
  17. Y. Poon (1980). “The Generalized k-Numerical Range,” Linear and Multilinear Algebra 9, 181–186.MathSciNetMATHCrossRefGoogle Scholar
  18. M. Marcus (1979). “Some Combinatorial Aspects of the Generalized Numerical Range,” Ann. New York Acad. Sci. 319, 368–376.CrossRefGoogle Scholar
  19. Y. Au-Yeung and N. Tsing (1983). “A Conjecture of Marcus on the Generalized Numerical Range,” Linear and Multilinear Algebra 14, 235–239.MathSciNetMATHCrossRefGoogle Scholar
  20. W. Man (1987). “The Convexity of the Generalized Numerical Range,” Linear and Multilinear Algebra 20, 229–245.MathSciNetMATHCrossRefGoogle Scholar
  21. B. D. Saunders and H. Schneider (1976). “A Symmetric Numerical Range for Matrices,” Numer. Math. 26, 99–105.MathSciNetMATHCrossRefGoogle Scholar

Notes and References for Section 5.6

  1. C. Johnson (1978). Numerical Determination of the Field of Values of a General Complex Matrix,” SIAM J Numer. Anal. 15, 595–602.MathSciNetMATHCrossRefGoogle Scholar
  2. M. Marcus (1987). “Computer Generated Numerical Ranges and Some Resulting Theorems,” Linear and Multilin. Alg. 20, 121–157.MATHCrossRefGoogle Scholar
  3. L. N. Trefethen (1990). “Approximation Theory and Numerical Linear Algebra,” in Algorithms for Approximation. II, eds. J. Mason and M. Cox, Chapman, London, 336–360.Google Scholar
  4. M. Eiermann (1993). “Fields of Values and Iterative Methods,” Linear Alg. é4 Applic. 180, 167–197.MathSciNetMATHCrossRefGoogle Scholar
  5. D. M. Young (1971). Iterative Solution of large Linear Systems, Academic Press, New York.MATHGoogle Scholar
  6. K. Gustafson and R. Hartman (1985). “Graph Theory and Fluid Dynamics,” SIAM J. Alg. Disc. Math. 6, 643–656MathSciNetMATHCrossRefGoogle Scholar
  7. K. Gustafson (1987). Partial Differential Equations, 2nd Ed., Wiley, New York, 311.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Karl E. Gustafson
    • 1
  • Duggirala K. M. Rao
    • 2
  1. 1.Department of MathematicsUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of MathematicsColegio Bolivar at CaliCaliColombia

Personalised recommendations