Skip to main content

Mapping Theorems

  • Chapter
Numerical Range

Part of the book series: Universitext ((UTX))

  • 972 Accesses

Abstract

Mapping theorems for the numerical range analogous to the spectral mapping theorem are hard to come by. The analogy is rather limited by the convexity of the numerical range. However, significant results were obtained in relating the numerical ranges and the numerical radii of an operator T to those of the operator f(T), where f is is a given function. As can be expected, the best results were obtained in the special case f(T) = T n, n a natural number. In addition to the preceding results, this chapter also gives some other results for the numerical range of products, commuting operators, and the natural connections between the numerical range and the theory of dilations of operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

Notes and References for Section 2.1

  • C. Pearcy (1966). “An Elementary Proof of the Power Inequality for the Numerical Radius,” Mich. Math. J. 13, 289–291.

    Article  MathSciNet  MATH  Google Scholar 

  • C. A. Berger (1965). “A Strange Dilation Theorem,” Amer. Math. Soc. Notices 12, 590.

    Google Scholar 

  • B. Sz.-Nagy and C. Foins (1966). “On Certain Classes of power-bounded operators in Hilbert Space,” Acta. Sci. Mat. 27, 17–25.

    MATH  Google Scholar 

  • C. A. Berger and J. G. Stampfli (1967). “Mapping Theorems for the Numerical Range,” Amer. J. Math. 89, 1047–1055.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Ando (1973). “Structure of Operators with Numerical Radius One,” Acta. Sci. Mat. (Szeged) 34, 11–15.

    MathSciNet  MATH  Google Scholar 

  • T. Furuta and R. Nakamoto (1971). “Certain Numerical Radius Contraction Operators,” Proc. Amer. Math. Soc. 29, 521–524.

    Article  MathSciNet  MATH  Google Scholar 

  • E. S. W. Shiu (1976). “Growth of the Numerical Ranges of Powers of Hilbert Space Operators,” Mich. Math. J. 23, 155–160.

    Article  MathSciNet  MATH  Google Scholar 

Notes and References for Section 2.2

  • M. H. Stone (1932). Linear Transformations in Hilbert Space, American Mathematical Society, R.I.

    Google Scholar 

  • T. Kato (1965). “Some Mapping Theorems for the Numerical Range,” Proc. Japan Acad. 41, 652–655.

    Article  MathSciNet  MATH  Google Scholar 

  • C. K. Li (1995). “Numerical Ranges of the Powers of an Operator,” Preprint.

    Google Scholar 

Notes and References for Section 2.3

Notes and References for Section 2.4

Notes and References for Section 2.5

Notes and References for Section 2.6

  • P. Halmos (1950). “Normal Dilations and Extensions of Operators,” Summa Brasil. Math. 2, 125–134.

    MathSciNet  Google Scholar 

  • B. Sz.-Nagy (1953). “Sur les Contractions de l’espace de Hilbert,” Acta Sci. Math. 15, 87–92.

    MathSciNet  MATH  Google Scholar 

  • B. Sz.-Nagy and C. Foias (1970). Harmonic Analysis of Operators on Hilbert Space, North Holland.

    Google Scholar 

  • J. J. Schäffer (1955). “On Unitary Dilations of Contractions,” Proc. Amer. Math. Soc. 6, 322.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Ando (1961). “On a Pair of Commutative Contractions,” Acta Sci. Math. 24, 88–90.

    MathSciNet  Google Scholar 

  • P. Lax and R. S. Phillips (1967). Scattering Theory, Academic Press, New York.

    MATH  Google Scholar 

  • R. Goodrich and K. Gustafson (1981). “Weighted Trigonometric Approximation and Inner—Outer Functions on Higher Dimensional Euclidean Spaces,” J. Approx. Theory 31, 368–382.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Goodrich and K. Gustafson (1986). “Spectral Approximation,” J. Approx. Theory 48, 272–293.

    Article  MathSciNet  Google Scholar 

  • M. Akcoglu (1975). “Positive Contractions on Li-Spaces,” Math. Zeit. 143, 1–13.

    Article  MathSciNet  Google Scholar 

  • M. Kern, R. Nagel, and G. Palm (1977). “Dilations of Positive Operators: Construction and Ergodic Theory,” Math. Zeit. 156, 265–267.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Antoniou and K. Gustafson (1996). “Dilation of Markov Processes to Dynamical Systems,” preprint.

    Google Scholar 

  • I. P. Cornfeld, S. V. Fomin, and Ya G. Sinai (1982). Ergodic Theory, Springer, New York.

    MATH  Google Scholar 

  • V. Rokhlin (1964). “Exact Endomorphisms of a Lebesgue Space,” Amer. Math. Soc. Transi. 39, 1 - 36.

    MATH  Google Scholar 

  • I. Antoniou and K. Gustafson (1993). “From Probabilistic Descriptions to Deterministic Dynamics,” Physica A 197, 153–166.

    Article  MathSciNet  MATH  Google Scholar 

  • J. A. R. Holbrook (1968). “On the power-bounded operators of Sz.-Nagy and Foias,” Acta Sci. Math. 29, 299–310.

    MathSciNet  MATH  Google Scholar 

  • K. Okubo and T. Ando (1976). “Operator radii of commuting products,” Proc. Amer. Math. Soc. 56, 203–210.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Gustafson (1969). “Polynomials of Infinitesimal Generators of Contraction Semigroups,” Notices Amer. Math. Soc. 16, 767

    Google Scholar 

  • K. Gustafson and G. Lumer (1972). “Multiplicative Perturbation of Semi-group Generators,” Pacific J. Math. 41, 731–742

    MathSciNet  MATH  Google Scholar 

  • K. Löwner (1934). “Uber Monotone Matrixfunktionen,” Math. Z. 38, 177–216.

    Article  MathSciNet  Google Scholar 

  • E. Heinz (1951). “Beiträge zur Störungstheorie der Spektralzerlegung,” Math. Ann. 123, 415 - 438.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Davis (1963). “Notions Generalizing Convexity for Function Defined on Spaces of Matrices,” in Convexity(V. Klee, ed.), Amer. Math. Soc., 187–201.

    Google Scholar 

  • K. Bhagwat and A. Subramanian (1978). “Inequalities Between Means of Positive Operators,” Math Proc Camb. Phil. Soc. 83, 393–401.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Furuta (1987). “A ≥ B ≥ 0 assure (B r A p B r)1/qB (p+2r)/q for r ≥ 0, p ≥ 0, q ≥ 1 with (1+2r)qp+2r,” Proc. Amer. Math. Soc. 101, 85–88.

    MathSciNet  MATH  Google Scholar 

  • T. Furuta (1995). “Extension of the Furuta Inequality and Ando—Hiai Log—Majorization,” Lin. Alg. Appl. 219, 139–155.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gustafson, K.E., Rao, D.K.M. (1997). Mapping Theorems. In: Numerical Range. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8498-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8498-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94835-5

  • Online ISBN: 978-1-4613-8498-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics