Skip to main content

Development of Human Granulosa Cell Lines

  • Chapter

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

Ovarian granulosa cells play an essential role in the maturation of the developing ovum and in the synthesis of progesterone and estradiol. Granulosa cells of human origin are, however, difficult to obtain in sufficient numbers to accomplish detailed studies on the regulation of genes involved in granulosa cell division and hormone synthesis. Moreover, the granulosa cells that are readily available from women undergoing in vitro fertilization are in the process of differentiating into luteal cells. A culture system in which large numbers of functional cells can be propagated is a prerequisite for studying the molecular mechanisms controlling the expression of these proteins. In primary cultures of human granulosa (HG) cells it has proven particularly difficult to conduct molecular research due to the availability of only limited numbers of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeleznik AJ, Hillier SG, Knazek RA, et al. Production of long term steroid-producing granulosa cell cultures by cell hybridization. Endocrinology 1979; 105: 156–62.

    Article  PubMed  CAS  Google Scholar 

  2. Amsterdam A, Zauberman A, Meir G, et al. Cotransfection of granulosa cells with simian virus 40 and Ha-RAS oncogene generates stable lines capable of induced steroidogenesis. Proc Natl Acad Sci USA 1988; 85: 7582–6.

    Article  PubMed  CAS  Google Scholar 

  3. Zilberstein M, Chou JY, Lowe Jr. WL, et al. Expression of insulin-like growth factor-I and its receptor by SV40-transformed rat granulosa cells. Mol Endocrinol 1989; 3: 1488–97.

    Article  PubMed  CAS  Google Scholar 

  4. Fitz TA, Wah RM, Schmidt WA, Winkel CA. Physiologic characterization of transformed and cloned rat granulosa cells. Biol Reprod 1989; 40: 250–8.

    Article  PubMed  CAS  Google Scholar 

  5. Pan J, Roskelley CD, Luu-The V, Rojiani M, Auersperg N. Reversal of divergent differentiation by ras oncogene-mediated transformation. Cancer Res 1992; 52: 4269–72.

    PubMed  CAS  Google Scholar 

  6. Hanukoglu I, Suh BS, Himmelhoch S, Amsterdam A. Induction and mitochondrial localization of cytochrome P4505, system enzymes in normal and transformed ovarian granulosa cells. J Cell Biol 1990; 111: 1373–81.

    Article  PubMed  CAS  Google Scholar 

  7. Amsterdam A, Plehn-Dujowich D, Suh BS. Structure-function relationships during differentiation of normal and oncogene-transformed granulosa cells. Biol Reprod 1992; 46: 513–22.

    Article  PubMed  CAS  Google Scholar 

  8. Amsterdam A, Suh BS. An inducible functional peripheral benzodiazepine receptor in mitochondria of steroidogenic granulosa cells. Endocrinology 1991; 129: 503–10.

    Article  PubMed  CAS  Google Scholar 

  9. Shay JW, Wright WE, Werbin H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1991; 1072: 1–7.

    PubMed  CAS  Google Scholar 

  10. Rainey WE, Sawetawan C, Shay JW, Michael MD, Mathis JM, Kutteh W, Byrd W, Carr BR. Transformation of human granulosa cells with the E6 and E7 regions of human papillomavirus. J Clin Endocrinol Metab 1994; 78: 705–10.

    Article  PubMed  CAS  Google Scholar 

  11. Hudson JB, Bedell MA, McCance DJ, Laiminis LA. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol 1990; 64: 519–26.

    PubMed  CAS  Google Scholar 

  12. Sedman SA, Barbosa MS, Vass WC, et al. The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J Virol 1991; 65: 4860–6.

    PubMed  CAS  Google Scholar 

  13. Shay JW, Wright WE, Van Der Haegen BA. E6 of human papillomavirus 16 can overcome the Ml stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 1993; 8: 1407–13.

    PubMed  CAS  Google Scholar 

  14. Halbert CL, Demers GW, Galloway DA. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol 1992; 66: 2125–34.

    PubMed  CAS  Google Scholar 

  15. Miller AD. Human gene therapy comes of age. Nature 1992; 357: 455–60.

    Article  PubMed  CAS  Google Scholar 

  16. Miller AD. Persistent gene expression after retroviral gene transfer into liver cells in vivo. Hum Gene Ther 1992; 2: 27–32.

    Google Scholar 

  17. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6: 2895–902.

    PubMed  CAS  Google Scholar 

  18. Palmer TD, Hock RA, Osborne WRA, Miller AD. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human. Proc Natl Acad Sci USA 1987; 84: 1055–9.

    Article  PubMed  CAS  Google Scholar 

  19. Rao IM, Gadson PF, Anderson E, Hornsby PJ, Mahesh VB. Characterization of progesterone biosynthesis in a transformed granulosa cell line. Mol Cell Endocrinol 1993; 94: 121–8.

    Article  PubMed  CAS  Google Scholar 

  20. Soto EA, Kliman HJ, Strauss III JF, Paavola LG. Gonadotropins and adenosine 3’,5’-monophosphate (cAMP) alter the morphology of cultured human granulosa cells. Biol Reprod 1986; 34: 559–69.

    Article  PubMed  CAS  Google Scholar 

  21. Carr BR. The ovary. In: Carr BR, Blackwell RE, eds. Textbook of reproductive medicine. Norwalk, CT: Appleton & Lange, 1993: 183–208.

    Google Scholar 

  22. Steinkampf MP, Mendelson CR, Simpson ER. Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells. Mol Endocrinol 1987; 1: 465–71.

    Article  PubMed  CAS  Google Scholar 

  23. Gospodarowicz D, Iu CR, Birdwell CR. Effect of fibroblast and epidermal growth factors on ovarian cell proliferation in vitro. II. Proliferative response of luteal cells to FGF but not EGF. Endocrinology 1977; 100: 1121.

    Article  PubMed  CAS  Google Scholar 

  24. Di Blasio AM, Vigano P, Ferrari A. Insulin-like growth factor-II stimulates human granulosa-luteal cell proliferation in vitro. Fertil Steril 1994; 61: 483–7.

    PubMed  Google Scholar 

  25. Olsson JH, Carlsson B, Hillensjo T. Effect of insulin-like growth factor-I on deoxyribonucleic acid synthesis in cultured human granulosa cells. Fertil Steril 1990; 54: 1052–7.

    PubMed  CAS  Google Scholar 

  26. Yong EL, Baird DT, Yates R, Reichert LE Jr, Hillier SG. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab 1992; 74: 842–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hillier SG, Miro F. Inhibin, activin and follistatin: potential roles in ovarian physiology. Ann NY Acad Sci 1993; 687: 29–38.

    Article  PubMed  CAS  Google Scholar 

  28. Chomczynski P, Sacchi. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–9.

    Article  PubMed  CAS  Google Scholar 

  29. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 1979; 18: 5294–9.

    Article  PubMed  CAS  Google Scholar 

  30. Rodgers RJ, Stuchbery SJ, Findlay JK. Inhibin mRNAs in ovine and bovine ovarian follicles and corpora lutea throughout the estrous cycle and gestation. Mol Cell Endocrinol 1990; 62: 95–101.

    Article  Google Scholar 

  31. Stewart AG, Milborrow HM, Ring JM, Crowther CE, Forage RG. Human genomic characterization and sequencing. FEBS Lett 1986; 206: 329–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rainey, W.E., Lavranos, T.C., Corbould, A.M., Rodgers, R.J., Carr, B.R. (1996). Development of Human Granulosa Cell Lines. In: Chang, R.J. (eds) Polycystic Ovary Syndrome. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8483-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8483-0_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8485-4

  • Online ISBN: 978-1-4613-8483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics