Skip to main content

Model Description of Passive Tracer Density Fields in the Framework of Burgers’ and Other Related Model Equations

  • Conference paper
Nonlinear Stochastic PDEs

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 77))

Abstract

We analyze evolution of passive tracer density field advected in the velocity field governed by the multidimensional Burgers’ equation. A model description is developed and studied at the physical level of rigorousness for 2- and 1-D flows. In the 1-D case, we also consider a more general flow which admits both pressure and dispersion effects for polytropic pressure dependence on density. Fourier-Lagrangian representation and generalized density fields are discussed for multistream regimes and non-smooth Eulerian-to-Lagrangian maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Avallaneda, E. Weinan, Statistical properties of shocks in Burgers’ turbulence, Comm. Math. Phys (1994), to appear.

    Google Scholar 

  2. G.T. Csanady, Turbulent Diffusion in the Environment (Reidel, Dordrecht-Boston-London, 1980).

    Google Scholar 

  3. R.E. Davis, On relating Eulerian and Lagrangian velocity statistics: single particles in homogeneous flows, J. Fluid Mech. 114, pp. 1–26 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  4. R.E. Davis, On relating Eulerian and Lagrangian velocity statistics: single particles in homogeneous flows, J. Marine Res. 41, pp. 163–194 (1983).

    Article  Google Scholar 

  5. R.J. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rat. Math. Mech. 82, pp. 27–70 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. R.J. Diperna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91, pp. 1–30 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  7. J.D. Fournier, U. Frisch, The deterministic and statistical Burgers equation, J. Mec. Theor. Appl. 2, pp. 699–750 (1983).

    MATH  MathSciNet  Google Scholar 

  8. T. Funaki, D. Surgailis, W.A. Woyczynski, Gibbs-Cox random fields and Burgers’ turbulence, Ann. Appl. Probability 5, (1995) to appear.

    Google Scholar 

  9. E.E. Gossard, U.K. Khuk, Waves in Atmosphere (Nauka, Moscow, 1978).

    Google Scholar 

  10. T. Gotoh, R.H. Kraichnan, Statistics of decaying Burgers’ turbulence, Phys. Fluids A5, p. 2264 (1993).

    Google Scholar 

  11. S. Gurbatov, A. Malakhov, A. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles,(Manchester University Press, Manchester, 1991).

    Google Scholar 

  12. S.N. Gurbatov, A.I. Saichev, Inertial nonlinearity and chaotic motion of particle fluxes, Chaos 3, pp. 333–358 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Hopf, The partial differential equation, Commun. Pure Appl. Math. 3, pp. 201–230 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Hu, W.A. Woyczynski, An extremal rearrangement property of statistical solutions of the Burgers’ equation, Ann. Appl. Probability 4, pp. 838–858 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  15. R.H. Kraichnan, Models of intermittency in hydrodynamic turbulence, Phys. Rev. Letters 65, pp. 575–578 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  16. P.D. Lax, C.D. Levermore, The small dispersion limit of the Kortevegde Vries equation, Commun. Pure Appl. Math. 36 I, pp. 253–290; II, pp. 571–593; III, pp. 809–829 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. P.D. Lax, The zero dispersion limit, a deterministic analogue of turbulence, Commun. Pure Appl. Math. 44, pp. 1047–1056 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  18. J.T. Lipscomb, A.L. Frenkel, D. ter Haar, On the convection of a passive scalar by a turbulent Gaussian velocity field, J. Stat. Phys. 63, pp. 305–313 (1991).

    Article  Google Scholar 

  19. H. Nakazawa, Probabilistic aspects of equations of motion of forced Burgers and Navier-Stokes turbulence, Progr. Th. Phys. 64, pp. 1551–1564 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  20. O.A. Oleinik, On the Cauchy problem for nonlinear equations in a class of discontinuous functions, Doklady AN USSR 95, pp. 451–454 (1954).

    MathSciNet  Google Scholar 

  21. O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk 12, pp. 3–73 (1954).

    Google Scholar 

  22. A.I. Saichev, W.A. Woyczynski, Density fields in Burgers’ turbulence and their spectral properties, SIAM J. Appl. Math., to appear.

    Google Scholar 

  23. S.F. Shandarin, B.Z. Zeldovich, Turbulence, intermittency, structures in a self-gravitating medium: the large scale structure of the Universe, Rev. Modern Phys. 61, pp. 185–220 (1989).

    Article  MathSciNet  Google Scholar 

  24. YA.G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys. 148,pp. 601–622 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Surgailis, W.A. Woyczynski, Scaling limits of solutions of the Burgers’ equation with singular Gaussian initial data, in Chaos Expansions, Multiple Wiener-Ito Integrals, and Their Applications, edited by C. Houdré and V. Pérez-Abreu (Birkhaüser, Boston, 1994), pp. 145–161.

    Google Scholar 

  26. D. Surgailis, W.A. Woyczynski, Long range prediction and scaling limits for statistical solutions of the Burgers’ equation, in Nonlinear Waves and Weak Turbulence, edited by N. Fitzmaurice et al. (Birkhaüser, Boston, 1993), pp. 313–337.

    Chapter  Google Scholar 

  27. M. Vergassola, B. Dubrulle, U. Frisch, A. Nullez, Burgers equation, Devil’s staircases and the mass distribution for large-scale structures, Astron. Astrophys. (1994), to appear.

    Google Scholar 

  28. D.H. Weinberg, J.E. Gunn, Large scale structure and the adhesion approximation, Monthly Not. Royal Astronom. Soc. 247, pp. 260–286 (1990).

    Google Scholar 

  29. G.B. Witham, Linear and Nonlinear Waves (Wiley, New York, 1974), p. 460.

    Google Scholar 

  30. W.A. Woyczynski, Stochastic Burgers’ flows, in Nonlinear Waves and Weak Turbulence, edited by N. Fitzmaurice et al. (Birkhaüser, Boston, 1993), pp. 279–311.

    Chapter  Google Scholar 

  31. E. Zambianchi, A. Griffa, Effects of finite scales of turbulence on dispersions estimates, J. Marine Res. 52, pp. 129–148 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Saichev, A.I., Woyczynski, W.A. (1996). Model Description of Passive Tracer Density Fields in the Framework of Burgers’ and Other Related Model Equations. In: Funaki, T., Woyczynski, W.A. (eds) Nonlinear Stochastic PDEs. The IMA Volumes in Mathematics and its Applications, vol 77. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8468-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8468-7_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8470-0

  • Online ISBN: 978-1-4613-8468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics