Advertisement

Analytic Torsion, Flows and Foliations

  • Stephane Laederich
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 63)

Abstract

We present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.

Keywords

Periodic Orbit Zeta Function Heat Kernel Complex Manifold Closed Geodesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB1]
    M. Atiyah and R. Bott, A Lefschetz point formula for elliptic complexes, Ann. of Math., 86 (1967), pp. 374–407.MATHCrossRefMathSciNetGoogle Scholar
  2. [AB2]
    M. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II, Ann. of Math., 88 (1968), pp. 451–491.MATHCrossRefMathSciNetGoogle Scholar
  3. [BC]
    P. Baum and A. Connes, Chern character for discrete groups, A fete in Topology, Academic Press (1988).Google Scholar
  4. [Ch]
    J.Cheeger, Analytic torsion and the heat equation,Annals of Math. 109, pp. 259–322.Google Scholar
  5. [CGT]
    J.Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace Operator and the geometry of complete Riemannian manifolds, J. Diff. Geom., 17 (1982), pp. 15–53.MATHMathSciNetGoogle Scholar
  6. [CC]
    P. Cohen and A. Connes, On the noncommutative torus of dimension two, Springer Proc. in Physics, 47 (1990), pp. 151–156.Google Scholar
  7. [Col]
    A. Connes, A survey of foliations and operator algebras, Proc. Symp. Pure Math., 38 (1982), pp. 521–628.MathSciNetGoogle Scholar
  8. [Co2]
    A. Connes, Noncommutative differential geometry, Publications Mathematiques de l’IHES (1985).Google Scholar
  9. [CF]
    R. Crew andD. Fried, Nonsingular holomorphic flows, Topology 25 No 4 (1986), pp. 471–473.MATHCrossRefMathSciNetGoogle Scholar
  10. [D1]
    X. Dai, Adiabatic limits non multiplicativity of signature and the Leray spectral sequence,J. Amer. Math. Soc., vol 4, 2 (1991), pp. 265–321.CrossRefMathSciNetGoogle Scholar
  11. [D2]
    X. Dai, Geometric invariants and their adiabatic limits, MIT Preprint (1990).Google Scholar
  12. [Fa]
    J. Fay, Analytic torsion and Prym differentials, Ann. of Math. Studies, Princeton University Press (1981).Google Scholar
  13. [Fo]
    R. Forman, Personal communication.Google Scholar
  14. [Fr1]
    D. Fried, Zeta functions of Ruelle and Selberg I, Ann. Sci. Ec. Norm. sup., 19 (1986), pp. 491–517.MATHMathSciNetGoogle Scholar
  15. [Fr2]
    D. Fried, Zeta functions of Ruelle and Selberg II,In preparation.Google Scholar
  16. [Fr3]
    D. Fried, Lefschetz Formulas for flows, Contemp. Math., 58 III (1987), pp. 19–69.MathSciNetGoogle Scholar
  17. [Fr4]
    D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math., 84 (1986), pp. 523–540.CrossRefMathSciNetGoogle Scholar
  18. [Fr5]
    D. Fried, Torsion and closed geodesics on complex hyperbolic manifolds, Invent. Math., 91 (1988), pp. 31–51.CrossRefMathSciNetGoogle Scholar
  19. [Fr6]
    D. Fried, Periodic points of holomorphic maps, Topology 25 No 4 (1986), pp. 429–441.CrossRefMathSciNetGoogle Scholar
  20. [Gi]
    P. B. Gilkey, Invariance theory, the heat equation and the Atiyah—Singer index theorem, Publish or Perish 11 (1984).Google Scholar
  21. [GU]
    V. Guillemin and A. Uribe, Circular symmetry and the trace formula, Invent. Math., 96 (1989), pp. 385–423.MATHCrossRefMathSciNetGoogle Scholar
  22. [HW]
    G. Hardy andE. Wright, An introduction to the theory of numbers, Oxford Univ. Press (1978).Google Scholar
  23. [Ko]
    T. Kotake, The fixed point theorem of Atiyah—Bott via parabolic operators, Comm Pure and Appl. Math., 23 (1969), pp. 789–806.CrossRefMathSciNetGoogle Scholar
  24. [Lal]
    S. Laederich, -Torsion for complex manifolds and the adiabatic limit, Preprint, to be published in Comm. Math. Phys. (1992).Google Scholar
  25. [La2]
    S. Laederich, 0—Torsion, foliations and holomorphic vector fields, Preprint, to be published in Comm Math. Phys. (1992).Google Scholar
  26. [Lo]
    P. Lochak, Personal communication.Google Scholar
  27. [Me]
    R. B. Melrose, The Atiyah Patodi Singer index theorem, MIT Preprint (1991).Google Scholar
  28. [Mu]
    W. Muller, Analytic torsion and Reidemeister torsion of Riemannian manifolds, Adv. in Math., 28, 3 (1978), pp. 233–305.CrossRefMathSciNetGoogle Scholar
  29. [MS]
    C. Moore and C. Schochet, Global analysis on foliated spaces, MSRI Publ. 9, Springer-Verlag (1988).Google Scholar
  30. [RS1]
    D. Ray and I. Singer, R-torsion and the Laplacian on Riemannian Manifolds, Adv. in Math., 7 (1971), pp. 145–210.MATHCrossRefMathSciNetGoogle Scholar
  31. [RS2]
    D. Ray and J. SINGER, Analytic torsion for complex manifolds, Ann. of Math., 108 (1978), pp. 1–39.CrossRefMathSciNetGoogle Scholar
  32. [Ru]
    D. Ruelle, Zeta functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), pp. 231–242.MATHCrossRefMathSciNetGoogle Scholar
  33. [Se]
    R. T. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math., 10 (1967), pp. 288–307.MathSciNetGoogle Scholar
  34. [We]
    R. O. Wells, Differential analysis on complex manifolds, Springer-Verlag, GTM 65 (1980).Google Scholar
  35. [Wi]
    E. Witten, Supersymmetry and Morse theory, Adv. in Math., 4 (1970), pp. 109–126.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Stephane Laederich
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations