Actin Polymerization and Gel Osmotic Swelling in Tumor Cell Pseudopod Formation

  • C. Dong
  • J. You
  • S. Aznavoorian
  • D. Savarese
  • L. A. Liotta


Active tumor cell motility has long been appreciated to play a major role in invasion and metastasis. Tumor cells exhibit an amoeboid movement similar to that of polymorphonuclear (PMN) leukocytes and the lower eukaryote Dictyostelium, characterized by pseudopod protrusion at the leading edge of the cell (Oster and Perelson 1987; Guirguis et al 1987; Condeelis 1992; Condeelis et al 1988, 1990, 1992; Stossel 1989, 1990, 1993; Usami et al 1992; Liotta 1992). Most of the current knowledge of mechanisms of amoeboid Chemotaxis is derived from studies of PMN leukocytes and Dictyostelium amoebae, which have revealed many similarities between the two different eukaryotic models.


Actin Filament Actin Polymerization Pertussis Toxin Actin Monomer Bleb Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.J.; Pollard, T.D. Membrane-bound myosin-I provides new mechanisms in cell motility. Cell Motil. Cytoskel 14:178–182; 1989.CrossRefGoogle Scholar
  2. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.D. Molecular Biology of the Cell Garland Publishing, Inc., New York; 1983.Google Scholar
  3. Aznavoorian, S.; Stracke, M.L.; Krutzsch, H.; Schiffmann, E.; Liotta, L.A. Signal transduction for Chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol 110:1427–1438; 1990.PubMedCrossRefGoogle Scholar
  4. Biot, M.A. Theory of elasticity and consolidation for a porous anisotropic solid. J. Cell Biol 26:182–185; 1955.Google Scholar
  5. Bray, D.; Money, N.P.; Harold, F.M.; Bamburg, J.R. Responses of growth cones to changes in osmolality of the surrounding medium. J. Cell Sci 98:507–515; 1991.PubMedGoogle Scholar
  6. Cassimeris, L.; Zigmond, S.H. Chemoattractant stimulation of polymorphonuclear leucocyte locomotion. Cell Biol 1:125–134; 1990.Google Scholar
  7. Coates, T.D.; Watts, R.G.; Hartman, R.; Howard, T.H. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol 117:765–774; 1992.PubMedCrossRefGoogle Scholar
  8. Condeelis, J. Are all pseudopods created equal? Cell Motil. Cytoskel 22:1–6; 1992.CrossRefGoogle Scholar
  9. Condeelis, J.; Hall, A.; Bresnick, A.; Warren, V.; Hock, R.; Bennett, H.; Ogihara, S. Actin polymerization and pseudopod extension during amoeboid Chemotaxis. Cell MotiL Cytoskel. 10:77–90; 1988.CrossRefGoogle Scholar
  10. Condeelis, J.; Bresnick, A.; Demma, M.; Dharmawardhane, S.; Eddy, R.; Hall, A.L.; Sauterer, R.; Warren, V. Mechanisms of amoeboid Chemotaxis: An evaluation of the cortical expansion model. Developmental Genetics 11:333–340; 1990.PubMedCrossRefGoogle Scholar
  11. Condeelis, J.; Jones, J.; Segall, J.E. Chemotaxis of metastatic tumor cells: Clues to mechanisms from the Dictyostelium paradigm. Cancer Met. Rev 11:55–68; 1992.CrossRefGoogle Scholar
  12. Cooper, J. The role of actin polymerization in cell motility. Annu. Rev. Physiol 53:585–605; 1991.PubMedCrossRefGoogle Scholar
  13. Cunningham, C.C. Actin structural proteins in cell motility. Cancer Met. Rev. 11:69–77; 1992.CrossRefGoogle Scholar
  14. DiMilla, P.A.; Barbee, K.; Lauffengurger, D.A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. 7. 60:15–37; 1991.CrossRefGoogle Scholar
  15. Dong, C.; Aznavoorian, S.; Liotta, L.A. Two phases of pseudopod protrusion in tumor cells revealed by a micropipette. Microvasc. Res 47:55–67, 1994.PubMedCrossRefGoogle Scholar
  16. Evans, E.A.; Dembo, M. Physical model for phagocyte motility: Local growth of a contractile network from a passive body. Biomechanics of Active Movement and Deformation of Cells (Ed. Akkas, N.), NATO ASI Series H42:185–214, Springer-Verlag, Berlin-New York; 1990.Google Scholar
  17. Forscher, P. Calcium and polyphosphoinositide control of cytoskeletal dynamics. Trends Neuro. Sci 12:468–474; 1989.CrossRefGoogle Scholar
  18. Gherardi, E. Growth factors and cell movement. Eur. J. Cancer 27:403–405; 1991.PubMedCrossRefGoogle Scholar
  19. Giuliano, K.A.; Kolega, J.; DeBiasio, R.L.; Taylor, D.L. Myosin II phosphorylation and the dynamics of stress fibers in serum-deprived and stimulated fibroblasts. Mol. Biol. Cell 3:1037–1048; 1992.PubMedGoogle Scholar
  20. Guirguis, R.; Margulies, I.; Taraboletti, G.; Schiffmann, E; Liotta, L. Cytokine-induced pseudopodial protrusion is coupled to tumour cell migration. Nature 329:261–263; 1987.PubMedCrossRefGoogle Scholar
  21. Hobbie, R.K. Transport through neutral membranes. In: Intermediate Physics for Medicine and Biology, John Wiley-Sons, New York; 1987.Google Scholar
  22. Janmey, P.A.; Chaponnier, C.; Lind, S.E.; Zaner, K.S.; Stossel, T.P.; Yin, H.L. Interactions of gelsolin and gelsolin-actin complexes with actin. Biochem. 24:3714–3723; 1985.CrossRefGoogle Scholar
  23. Janson, L.W.; Sellers, J.R.; Taylor, D.L. Actin-binding proteins regulate the work performed by myosin II motors on single actin filaments. Cell Motil. Cytoskel 22:274–280; 1992.CrossRefGoogle Scholar
  24. Lassing, I.; Lindberg, U. Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp. Cell Res 174:1–15; 1988.PubMedCrossRefGoogle Scholar
  25. Lester, B.R.; McCarthy, J.B. Tumor cell adhesion to the extracellular matrix and signal transduction mechanisms implicated in tumor cell motility, invasion and metastasis. Cancer Met. Rev 11:31–44; 1992.CrossRefGoogle Scholar
  26. Liotta, L.A.; Mandler, R.; Murano, G.; Katz, D.A.; Gordon, R.K.; Chiang, P.K.; Schiffmann, E. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci 83:3302–3306; 1986.PubMedCrossRefGoogle Scholar
  27. Liotta, L.A. Cancer cell invasion and metastasis. Scientific American 266:54–63; 1992.PubMedCrossRefGoogle Scholar
  28. Nabi, I.R.; Watanabe, H.; Raz, A. Autocrine motility factor and its receptor: Role in cell locomotion and metastasis. Cancer Met. Rev 11:5–20; 1992.CrossRefGoogle Scholar
  29. Oster, G.F.; Perelson, A.S. The physics of cell motility. J. Cell Sci 8:35–54; 1987.Google Scholar
  30. Perelson, A.S.; Coutsias, E.A. A moving boundary model of acrosomal elongation. J. Math. Biol 23:361–378; 1986.CrossRefGoogle Scholar
  31. Pollard, T.P.; Mooseker, M.S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J. Cell Biol 88:654–659; 1981.PubMedCrossRefGoogle Scholar
  32. Savarese, D.M.F.; Russell, J.T.; Fatatis, A.; Liotta, L.A. Type IV collagen stimulates an increase in intracellular calcium: Potential role in tumor cell motility. J. Biol. Chem 267:21928–21935; 1992.PubMedGoogle Scholar
  33. Stossel, T.P. From signal to pseudopod: How cells control cytoplasmic actin assembly. J. Biol. Chem 264:18261–18264; 1989.PubMedGoogle Scholar
  34. Stossel, T.P. How cells crawl. American Scientist 78:408–423; 1990.Google Scholar
  35. Stossel, T.P. On the crawling of animal cells. Science 260:1086–1094; 1993.PubMedCrossRefGoogle Scholar
  36. Stracke, M.L. Aznavoorian, S.; Beckner M.; Liotta, L.; Schiffmann, E. Cell motility, a principle requirement for metastasis. In: Cell Motility Factors (Goldberg, I.D. Ed.), Birkhauser Verlag Basel/Switzerland, pp. 147–162; 1991.Google Scholar
  37. Theriot, J.A.; Mitchison, T.J. Actin microfilament dynamics in locomoting cells. Nature 352:126–131; 1991.PubMedCrossRefGoogle Scholar
  38. Titus, M.A.; Wessels, D.; Spudich, J.A.; Soll D. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol. Biol. Cell 4:233–246; 1993.PubMedGoogle Scholar
  39. Usami, S.; Wang, S.L.; Skierczynski, B.A.; Skalak, R.; Chien, S. Locomotion forces generated by a polymorphonuclear leukocyte. Biophys. J 63:1663–1666; 1992.PubMedCrossRefGoogle Scholar
  40. Wang, Y.L. Exchange of actin subunits at the leading edge of living fibroblasts: Possibly role of treadmilling. J. Cell Biol 101:597–602; 1985PubMedCrossRefGoogle Scholar
  41. Wang, Y.L. Dynamics of the cytoskeleton in live cells. Current Opinion in Cell Biology 3:27–32; 1991.PubMedCrossRefGoogle Scholar
  42. Watts, R.G.; Crispens, M.A.; Howard, T.H. A quantitative study of the role of F-actin in producing neutrophil shape. Cell Motil. Cytoskel 19:159–168; 1991.CrossRefGoogle Scholar
  43. Wenger, A. Head to tail polymerization of actin. J. Mol. Biol 108:139–150; 1976.CrossRefGoogle Scholar
  44. You, J.; Dong, C. Analysis of pseudopod formation during tumor cell migration. Submitted; 1994.Google Scholar
  45. Zhu, C.; Skalak, R. A continuum model of protrusion of pseudopod in leukocytes. Biophys. J 54:1115–1137; 1988.PubMedCrossRefGoogle Scholar
  46. Zigmond, S.H. Chemotactic response of neutrophils. Am. J. Respir Cell. Mol. Biol 1:451–453; 1989.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • C. Dong
  • J. You
  • S. Aznavoorian
  • D. Savarese
  • L. A. Liotta

There are no affiliations available

Personalised recommendations