Modeling Mechanical-Electrical Transduction in the Heart

  • F. Sachs


The rate and rhythm of the heart is sensitive to mechanical deformation. As early as 1915, Bainbridge reported that distention of the atria produced an increase in heart rate (Bainbridge, 1915). Later studies showed that stretching alters action potential configuration (Dudel and Trautwein, 1954; Rosen et al. 1981; Dean and Lab, 1989; Lab, 1980; Taggart et al. 1992c; Taggart et al. 1992a; Taggart et al. 1992b; White et al. 1993), cause quiescent tissue to become spontaneously active and cause the generation of extra systoles (Hansen et al. 1990; Rajala et al. 1990; Stacy, Jr. et al. 1992; Sideris et al. 1990; Sideris et al. 1989; Hansen et al. 1991).


Sarcomere Length Action Potential Amplitude Action Potential Shape Maximum Diastolic Potential Chick Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous Heart Program Manual, V3.8. Oxford, England: Oxsoft Ltd., 1992.Google Scholar
  2. Bainbridge, F. A. The influence of venous filling upon the rate of the heart. J. Physiol. 50:65–84, 1915.PubMedGoogle Scholar
  3. Cooper, K. E., Tang, J. M., Rae, J. L., and Eisenberg, R. S. A cation channel in frog lens epithelia responsive to pressure and calcium.. J. Membrane Biol. 93:259–269, 1986.CrossRefGoogle Scholar
  4. Craelius, W., Chen, V., and El-Sherif, N. Stretch activated ion channels in ventricular myocytes. Bioscience Reports 8:407–414, 1988.PubMedCrossRefGoogle Scholar
  5. Dean, J. W. and Lab, M. J. Arrhythmia in heart failure: Role of mechanically induced changes in electrophysiology. The Lancet 1:1309–1312, 1989.CrossRefGoogle Scholar
  6. DiFrancesco, D. and Noble, D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans. Roy. Soc. B307:353–398, 1985.Google Scholar
  7. Dudel, J. and Trautwein, W. Das Aktionspotential und Mechanogramm des Herzmuskels unter dem Einfluss der Dehnung.. Cardiologia 25:334–362, 1954.CrossRefGoogle Scholar
  8. Fatt, P. and Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol 117:109–128, 1952.PubMedGoogle Scholar
  9. Francis, G. S. Development of arrhythmias in the patient with congestive heart failure: pathophysiology, prevalence and prognosis. Am. J. Cardiology 57:3B–7B, 1986.CrossRefGoogle Scholar
  10. Franz, M. R., Burkhoff, D., Yue, D. T., and Sagawa, K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc. es. 23:213–223, 1989.CrossRefGoogle Scholar
  11. Franz, M. R., Cima, R., Wang, D., Profitt, D., and Kurz, R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86:968–978, 1992.PubMedGoogle Scholar
  12. Guharay, F. and Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond) 352:685–701, 1984.Google Scholar
  13. Guharay, F. and Sachs, F. Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J. Physiol (Lond) 353:119–134, 1985.Google Scholar
  14. Hamill, O. P., Lane, J. W., and McBride, D. W. Amiloride: a molecular probe for mechanosensitive ion channels. Trends Pharmacol Sci 13:373–376, 1992.PubMedCrossRefGoogle Scholar
  15. Hamill, O. P. and McBride, D. W. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci USA 89:7462–7466, 1992.PubMedCrossRefGoogle Scholar
  16. Hansen, D. E., Craig, C. S., and Hondeghem, L. M. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81:1094–1105, 1990.PubMedCrossRefGoogle Scholar
  17. Hansen, D. E., Borganelli, M., Stacy, G. P. Jr., and Taylor, L. K. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ.Res. 69:820–831, 1991.PubMedGoogle Scholar
  18. Hansen, D. E. Mechanoelectrical feedback effects of altering preload, afterload and ventricular shortening. Am. J. Physiol. 264:H423–H432, 1993.PubMedGoogle Scholar
  19. Kaufmann, R. L., Lab, M. J., Hennekes, R., and Krause, H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 324:100–123, 1971.PubMedCrossRefGoogle Scholar
  20. Kim, D. A mechanosensitive K+ channel in heart cells — activation by arachidonic acid. J. Gen. Physiol. 100(6): 1021–1040, 1992.PubMedCrossRefGoogle Scholar
  21. Kim, D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res. 72:225–231, 1993.PubMedGoogle Scholar
  22. Lab, M. and Dean, J. Myocardial mechanics and arrhythmias. J. Cardiovasc. Pharm. 18(S2):S72–S79, 1991.Google Scholar
  23. Lab, M. J. Transient depolarization and action potential alterations following mechanical changes in isolated myocardium. Cardiovas. Res. 14:624–637, 1980.CrossRefGoogle Scholar
  24. Lab, M. J. Contraction-excitation feedback in myocardium. Circ.Res. 50:757–765, 1982.PubMedGoogle Scholar
  25. Lane, J. W., McBride, D., and Hamill, O. P. Amiloride blocks the mechanosensitive cation channel in Xenopus oocytes. J Physiol (Lond) 441:347–366, 1991.Google Scholar
  26. Langton, P. D. Calcium channels currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol (Lond) 471:1–11, 1993.Google Scholar
  27. Lecar, H. and Morris, C. Biophysics of mechanotransduction. In: Mechanoreception by the Vascular Wall, edited by G. M. Rubanyi. Mount Kisco, NY: Futura Publishing, 1993, p. 1–11.Google Scholar
  28. Lerman, B. B., Burkhoff, D., Yue, D. T., and Sagawa, K. Mechanoelectrical Feedback: Independent Role of Preload and Contractility in Modulation of Canine Ventricular Excitability. J. Clin. Invest. 76:1843–1850, 1985.PubMedCrossRefGoogle Scholar
  29. Martinac, B. Mechanosensitive ion channels: biophysics and physiology. In: Thermodynamics of cell surface receptors, Ed. M.B. Jackson. CRC Press, 327–352, 1993.Google Scholar
  30. McAllister, R. E., Noble, D., and Tsien, R. W. Reconstruction of the electrical activity of cardiac purkinje fibres. J. Physiol. (Lond.) 231:1–59, 1975.Google Scholar
  31. Meinertz, T., Hoffman, T., Kasper, W., and et al, Significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am. J. Cardiology 53:902–907, 1984.CrossRefGoogle Scholar
  32. Morris, C. E. Mechanosensitive ion channels. J. Membrane Biol. 113:93–107, 1990.CrossRefGoogle Scholar
  33. Penefsky, Z. A. and Hoffman, B. F. Effects of stretch on mechanical and electrical properties of cardiac muscle. Am. J. Physiology 204:433–438, 1963.Google Scholar
  34. Rajala, G. M., Pinter, M. J., and Kaplan, S. Response of the quiescent heart tube to mechanical stretch in the intact chick embryo. Developmental Biology 61:330–337, 1990.CrossRefGoogle Scholar
  35. Rosen, M. R., Legato, M. J., and Weiss, R. M. Developmental changes in impulse conduction in the canine heart. Am. J. Physiol. 240:H546–H554, 1981.PubMedGoogle Scholar
  36. Ruknudin, A., Sachs, F., and Bustamante, J.O. Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol 264:H960–H972, 1993.PubMedGoogle Scholar
  37. Sachs, F. Stretch-sensitive Ion Channels. The Neurosciences 2:49–57, 1990.Google Scholar
  38. Sachs, F. Mechanical transduction by membrane ion channels: a mini review. Mol. Cell. Biochem. 104:57–60, 1991.PubMedCrossRefGoogle Scholar
  39. Sachs, F. Stretch sensitive ion channels: an update. In: Sensory Transduction, edited by D. P. Corey and S. D. Roper. NY: Rockefeller Univ. Press, Soc. Gen. Physiol., 1992, p. 241–260.Google Scholar
  40. Shultz, R. A., Strauss, H. W., and Pitt, B. Sudden death following myocardial infarction: relation to ventricular premature contractions in the late hosptal phase and left ventricular ejection fraction. Am. J. Med. Sci. 62:1921977.Google Scholar
  41. Sideris, D. A., Toumanidis, S. T., Kostis, E. B., Diakos, A., and Moulopoulos, S. D. Arrhythmogenic effect of high blood pressure: some observations on its mechanism. Cardiovasc. Res. 23:983–992, 1989.PubMedCrossRefGoogle Scholar
  42. Sideris, D. A., Toumanidis, S. T., Kostis, E. B., Stagiannis, K., Spyropoulos, G., and Moulopoulos, S. D. Response of tertiary centres to pressure changes. Is there a mechano-electrical association?. Cardiovasc. Res. 24:13–18, 1990.PubMedCrossRefGoogle Scholar
  43. Sigurdson, W. J., Morris, C. E., Brezden, B. L., and Gardner, D. R. Stretch activation of a K+ channel in molluscan heart cells. J. Exp. Biol. 127:191–209, 1987.Google Scholar
  44. Sigurdson, W. J., Ruknudin, A., and Sachs, F. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am. J. Physiol. 262:H1110–H1115, 1992.PubMedGoogle Scholar
  45. Sigurdson, W. J., Sachs, F., and Diamond, S. L. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am. J. Physiol. 264:H1745-H1752, 1993.PubMedGoogle Scholar
  46. Sipido, K. R. and Marban, E. L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ.Res. 69:1487–1499, 1991.PubMedGoogle Scholar
  47. Sokabe, M. and Sachs, F. Towards a molecular mechanism of activation in mecha-nosensitive ion channels. In: Advances in Comparative and Environmental Physiology, v10, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55–77.Google Scholar
  48. Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., and Hansen, D. E. Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am. J. Physiol. 263:H613–H621, 1992.PubMedGoogle Scholar
  49. Taggart, P., Sutton, P., John, R., Lab, M., and Swanton, H. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. Br. Heart J. 67:221–229, 1992a.PubMedCrossRefGoogle Scholar
  50. Taggart, P., Sutton, P., and Lab, M. Interaction between ventricular loading and repolarization: relevance to arrhythmogenesis. Br. Heart J. 67:213–215, 1992b.PubMedCrossRefGoogle Scholar
  51. Taggart, P., Sutton, P., Lab, M., Runnalls, M., O’Brien, W., and Treasure, T. Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am. J. Physiol. 263:H816–H823, 1992c.PubMedGoogle Scholar
  52. Van Wagoner, D. R. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ.Res. 72:973–983, 1993.PubMedGoogle Scholar
  53. White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., and Gamier, D. The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp. Physiol. 78:65–78, 1993.PubMedGoogle Scholar
  54. Yang, X. and Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium Ions. Science 243:1068–1071, 1989.PubMedCrossRefGoogle Scholar
  55. Yang, X. C. and Sachs, F. Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol. (Lond.) 431:103–122, 1990.Google Scholar
  56. Yang, X. C. and Sachs, F. Mechanically sensitive, non-selective, cation channels. In: Non-selective ion channels, edited by D. Siemen and J. Hescheler. Heidelberg: Springer-Verlag 79–92, 1994.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • F. Sachs

There are no affiliations available

Personalised recommendations