Skip to main content

Human Neutrophils Under Mechanical Stress

  • Chapter
Cell Mechanics and Cellular Engineering

Abstract

White blood cells play an important role in blood flow dynamics in the microcirculation because of their large volume and low deformability (Bagge et al. 1980). Among them, the neutrophil is of special interest, for it can activate and change its mechanical properties in seconds (Evans et al. 1993). Early studies of the mechanical properties of the passive neutrophil (Bagge et al. 1977) suggest that it behaves as a simple viscoelastic solid (represented as elastic and viscous elements in series with another elastic element). This model, known as the “standard solid model” (Schmidt-Schönbein et al. 1981), is based on small deformation experiments in which the viscosity and the two elasticities are considered as bulk properties of the cytoplasm. The results from large deformation experiments, however, cannot be explained by this model. Evans and Kukan (1984) proposed a model where the elastic resistance of the cell comes from a thin domain close to the cell surface (the “cortex”), while the cytoplasm interior is a liquid rather than a solid. According to this model there are two parameters: the cortical tension and the apparent cytoplasmic viscosity, which are sufficient for characterizing the rheology of the neutrophil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagge, U.; Amundson, B.; Lauritzen, C. White blood cell deformability and Plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol. Scand. 108:159–163; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Bagge, U.; Skalak, R.; Attefors, R. Granulocyte Rheology. Adv. Microcirc. 7:29–48; 1977.

    Google Scholar 

  • Bray, D.; Heath, J.; Moss, D. The membrane-associated ‘cortex’ of animal cells: its structure and mechanical properties. J. Cell Sci. Suppl. 4:71–88; 1986.

    PubMed  CAS  Google Scholar 

  • Chien, S.; Schmid-Schönbein, G. W.; Sung, K.-L. P.; Schmalzer, E. A.; Skalak, R. Viscoelastic properties of leukocytes. In: White cell mechanics: basic science and clinical aspects. New York: Alan R. Liss, Inc.; 1984: p. 19–51.

    Google Scholar 

  • Esaguy, N.; Aguas, A. P.; Silva, M. T. High-resolution localization of lactoferrin in human neutrophils: Labeling of secondary granules and cell heterogeneity. J. Leukocyte Biology 46:51–62; 1989.

    CAS  Google Scholar 

  • Evans, E.; Kukan, B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood 64:1028–1035; 1984.

    PubMed  CAS  Google Scholar 

  • Evans, E.; Leung, A.; Zhelev, D. Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens. J. Cell Biol. 122:1295–1300; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Evans, E.; Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–934; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig, J. H.; Kwiatkowski, D. J. Actin-binding proteins. Current Opinion in Cell Biol. 3:87–97; 1991.

    Article  CAS  Google Scholar 

  • Hochmuth, R. M.; Ting-Beall, H. P.; Beaty, B. B.; Needham, D.; Tran-Son-Tay, R. Viscosity of passive human neutrophils undergoing small deformation. Biophys. J. 64:1596–1601; 1993a.

    Article  CAS  Google Scholar 

  • Hochmuth, R. M.; Ting-Beall, H. P.; Zhelev, D. V. The mechanical properties of individual passive neutrophils in vitro. In: Granger, D. N.; Schmid-Schonbain, G. W. eds. Physiology and pathophysiology of leukocyte adhesion. 1993b; in press.

    Google Scholar 

  • Needham, D.; Hochmuth, R. Rapid flow of passive neutrophils into a 4 μm pipet and measurement of cytoplasmic viscosity. J. Biomech. Eng. 112:269–276; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Needham, D.; Hochmuth R. M. A sensitive measure of surface stress in the resting neutrophil. Biophys. J. 61:1664–1670; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Schönbein, G. W.; Sung, K.-L. P.; Tozeren, H.; Skalak, R.; Chien, S. Passive mechanical properties of human leukocytes. Biophys. J. 36:243–256; 1981.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G. W.; Shih, Y. Y.; Chien, S. Morphometry of human leukocytes. Blood 56:866–875; 1980.

    PubMed  Google Scholar 

  • Sheterline, P.; Rickard J. E. The cortical actin filament network of neutrophil leukocytes during phagocytosis and Chemotaxis. In: Hallett, M. B. ed. The neutrophil: cellular biochemistry and physiology. Boca Raton, FL: CRC Press.; 1989: p. 141–165.

    Google Scholar 

  • Ting-Beall, H. P.; Needham, D.; Hochmuth, R. M. Volume and osmotic properties of human neutrophils. Blood 81:2774–2780; 1993.

    PubMed  CAS  Google Scholar 

  • Tran-Son-Tay, R.; Needham, D.; Yeung, A.; Hochmuth, R. Time-dependent recovery of passive neutrophils after large deformations. Biophys. J. 60:856–866; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Zhelev, D. V.; Hochmuth, R. M. Mechanically stimulated polymerization and contraction in human neutrophils. in preparation.

    Google Scholar 

  • Zhelev, D. V.; Needham, D.; Hochmuth, R. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys. J. 1993; submitted.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Zhelev, D.V., Hochmuth, R.M. (1994). Human Neutrophils Under Mechanical Stress. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics