Physics for Device Simulations and its Verification by Measurements

  • Herbert S. Bennett
  • Jeremiah R. Lowney
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 59)

Abstract

The motivations for using computers to simulate the electrical characteristics of transistors are discussed. Our work and that of others in the area of device physics and modeling are described. We compare conventional device physics with an alternative approach to device physics that is more directly traceable to quantum-mechanical concepts. We then apply this new approach to quasi-neutral regions, space-charge regions, and regions with high levels of carrier injection. Examples of applying quantum-mechanically-based device physics to energy band diagrams for bipolar transistors are given. The limits for using theoretical results from uniform media in numerical simulations of devices with large concentration gradients are discussed. Calculations of the effective intrinsic carrier concentrations for gallium arsenide and silicon are also given along with published data. In addition, calculations of the mobilities for GaAs that are based in part on quantum-mechanical phase shifts are compared with published data. We then conclude with a discussion of the requirements for verifying and calibrating device simulators for the submicrometer domain.

Key words

gallium arsenide heavy doping effects donor-ion-carrier interactions carrier-carrier interactions Fermi energy screening radii effective intrinsic carrier concentrations scattering mechanisms phonons plasmons carrier mobilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Blue and C. L. Wilson, IEEE Trans. Electron Devices ED-30, 1056 (1983).CrossRefGoogle Scholar
  2. 2.
    J. R. Klauder, Ann. Phys. 14, 43 (1961).MATHCrossRefGoogle Scholar
  3. 3.
    R. A. Abram, G. N. Childs, and P. A. Saunderson, J. Phys. C17, 6105 (1984).Google Scholar
  4. 4.
    J. del Alamo, S. Swirhun, and R. M. Swanson, Proceedings of the IEDM, 290 (1985).Google Scholar
  5. 5.
    H. S. Bennett, IEEE Trans. Electron Devices ED-30, 920 (1983).CrossRefGoogle Scholar
  6. 6.
    H. S. Bennett and D. E. Fuoss, IEEE Trans. Electron Devices ED-32, 2069 (1985).CrossRefGoogle Scholar
  7. 7.
    M. Kurata and J. Yoshida, IEEE Trans. Electron Devices ED-31, 467 (1984).CrossRefGoogle Scholar
  8. 8.
    P. M. Asbeck, D. L. Miller, R. Asatourian, and C. G. Kirkpatrick, IEEE Electron Device Letters EDL-3, 403 (1982).CrossRefGoogle Scholar
  9. 9.
    M. S. Adler, Solid-State Electronics 26, 387 (1983).CrossRefGoogle Scholar
  10. 10.
    S. P. Gaur, P. A. Habitz, Y. J. Park, R. K. Cook, Y.-S. Huang, and L. F. Wagner, IBM Journal of Research and Development 29, 242 (1985).CrossRefGoogle Scholar
  11. 11.
    M. S. Lundstom, R. J. Schwartz, and J. L. Gray, Solid-State Electronics 24, 195 (1981).CrossRefGoogle Scholar
  12. 12.
    A. H. Marshak, Solid-State Electronics 31, 1551 (1988).CrossRefGoogle Scholar
  13. 13.
    W. Slotboom and H. C. deGraaff, Solid-State Electronics 19, 586 (1976).CrossRefGoogle Scholar
  14. 14.
    H. B. Callen, Thermodynamics, New York: Wiley & Sons, 1960, p. 207.MATHGoogle Scholar
  15. 15.
    F. Reif, Fundamentals of Statistical and Thermal Physics, New York: McGraw-Hill, 1965, p. 324.Google Scholar
  16. 16.
    D. D. Tang, IEEE Trans. Electron Devices ED-27, 563 (1980).CrossRefGoogle Scholar
  17. 17.
    A. W. Weider, Proceedings of the IEDM, 460 (1978).Google Scholar
  18. 18.
    M. S. Adler and G. E. Possin, IEEE Trans. Electron Devices ED-28, 1053 (1981) and references therein.Google Scholar
  19. 19.
    G. E. Possin, M. S. Adler, and B. J. Baliga, IEEE Trans. Electron Devices ED-31, 3 (1984).CrossRefGoogle Scholar
  20. 20.
    J. Wagner and J. A. del Alamo, J. Appl. Phys. 63, 425 (1988).CrossRefGoogle Scholar
  21. 21.
    G. E. Possin, M. S. Adker, and B. J. Baliga, Proceedings of the ASTM Symposium on Lifetime Factors in Silicon, ASTM STP 712, 192 (1980).CrossRefGoogle Scholar
  22. 22.
    D. J. Roulston, N. D. Arora, and S. G. Chamberlain, IEEE Trans. Electron Devices ED-29, 284 (1982).CrossRefGoogle Scholar
  23. 23.
    W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).MATHCrossRefGoogle Scholar
  24. 24.
    H. S. Bennett, Solid-State Electronics 28, 193 (1985).CrossRefGoogle Scholar
  25. 25.
    H. S. Bennett, J. Appl. Phys. 59, 2837 (1986).CrossRefGoogle Scholar
  26. 26.
    H. S. Bennett and J. R. Lowney, J. Appl. Phys. 62, 521 (1987).CrossRefGoogle Scholar
  27. 27.
    H. S. Bennett, Solid-State Electronics 26, 1157 (1983).CrossRefGoogle Scholar
  28. 28.
    J. R. Lowney and H. S. Bennett, J. Appl. Physics 69, 7102 (1991).CrossRefGoogle Scholar
  29. 29.
    J. R. Lowney and W. R. Thurber, Electron. Lett. 20, 142 (1984).CrossRefGoogle Scholar
  30. 30.
    B. R. Chawla and H. K. Gummel, IEEE Trans. Electron Devices ED-18, 178 (1971).CrossRefGoogle Scholar
  31. 31.
    J. R. Lowney, Solid-State Electronics 28, 187 (1985).CrossRefGoogle Scholar
  32. 32.
    H. S. Bennett, J. Appl. Phys. 55, 3582 (1984).CrossRefGoogle Scholar
  33. 33.
    S. C. Jain, R. P. Mertens, P. Van Mieghem, M. G. Mauk, M. Ghannam, G. Borghs, and R. Van Overstraeten, Proceedings of the IEEE 1988 Bipolar Circuits and Technology Meeting, 1988, J. Jopke, Ed., p. 195.CrossRefGoogle Scholar
  34. 34.
    H. C. Chen, S. S. Li, and K. W. Teng, Solid-State Electronics 32, 339 (1989).CrossRefGoogle Scholar
  35. 35.
    A. Neugroschel, J. S. Wang, and F. A. Lindholm, IEEE Electron Device Letters, EDL-6, 253 (1985).CrossRefGoogle Scholar
  36. 36.
    M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, Phys. Rev. B 29, 2028 (1984).CrossRefGoogle Scholar
  37. 37.
    J. R. Lowney, Proceedings of the IEEE 1988 Bipolar Circuits and Technology Meeting, 1988, J. Jopke, Ed., p. 188.CrossRefGoogle Scholar
  38. 38.
    P. T. Landsberg and D. J. Robbins, Solid-State Electronics 28, 137 (1985).CrossRefGoogle Scholar
  39. 39.
    J. R. Lowney, J. Appl. Phys. 59, 2048 (1986).CrossRefGoogle Scholar
  40. 40.
    T. J. de Lyon, H. C. Casey, Jr., and A. J. SpringThorpe, J. Appl. Phys. 65, 2530 (1989).CrossRefGoogle Scholar
  41. 41.
    A. Yariv, Quantum Electronics, New York: Wiley & Sons, 1967, p. 282.Google Scholar
  42. 42.
    M. C. Wu, Y. K. Su, K. Y. Cheng, and C. Y. Chang, Solid-State Electronics 31, 251 (1988).CrossRefGoogle Scholar
  43. 43.
    J. R. Lowney, R. D. Larrabee, and W. R. Thurber, IEEE Proceedings of the Custom Integrated Circuits Conference, May 1983, p. 152.Google Scholar
  44. 44.
    J. R. Lowney and H. S. Bennett, J. Appl. Phys. 65, 4823 (1989).CrossRefGoogle Scholar
  45. 45.
    H. S. Bennett and J. R. Lowney, Solid-State Electronics 33, 675 (1990).CrossRefGoogle Scholar
  46. 46.
    J. R. Lowney, A. H. Kahn, J. L. Blue, and C. L. Wilson, J. Appl. Phys. 52, 4075 (1981).CrossRefGoogle Scholar
  47. 47.
    J. R. Lowney, J. Appl. Phys. 64, 4544 (1988).CrossRefGoogle Scholar
  48. 48.
    S. M. Sze, Physics of Semiconductor Devices, New York: Wiley & Sons, 1981, 2nd edition, p.21 and p. 850.Google Scholar
  49. 49.
    W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. Gatos, J. Appl. Phys. 50, 899 (1979).CrossRefGoogle Scholar
  50. 50.
    J. R. Lowney and H. S. Bennett, J. Appl. Phys. 53, 433 (1982).CrossRefGoogle Scholar
  51. 51.
    L. Reggiani, Hot-Electron Transport in Semiconductors (Springer-Verlag, New York, 1985), p.7ff.Google Scholar
  52. 52.
    D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc. London A 219, 53 (1953).MATHCrossRefGoogle Scholar
  53. 53.
    H. Ehrenreich, Phys. Rev. 120, 1951 (1960).CrossRefGoogle Scholar
  54. 54.
    J. D. Wiley in Semiconductors and Semimetals, Ed. by Willardson and Beer (Academic Press, New York, 1974) Vol. 10, p. 91.Google Scholar
  55. 55.
    P. Lugli and D. K. Ferry, Appl. Phys. Lett. 46, 594 (1985).CrossRefGoogle Scholar
  56. 56.
    R. Katoh, M. Kurata, and J. Yoshida, IEEE Trans. Electron Devices ED-36, 846, (1989).CrossRefGoogle Scholar
  57. 57.
    M. E. Kim, A. Das, and S. D. Senturia, Phys. Rev. B 18, 6890 (1978).CrossRefGoogle Scholar
  58. 58.
    H. Brooks and C. Herring, Phys. Rev. 83, 879 (1951).Google Scholar
  59. 59.
    L. F. Shampine and H. A. Watts, DEPAC-Design of a User Oriented Package of ODE Solvers, Sandia National Laboratories Technical Report, SAND-79–2374, 1979.Google Scholar
  60. 60.
    W. Walukiewicz, J. Lagowski, L. Jastrzebski, and H. C. Gatos, J. Appl. Phys. 50, 5040 (1979).CrossRefGoogle Scholar
  61. 61.
    D. Chattopadhyay, J. Appl. Phys. 53, 3330 (1982).CrossRefGoogle Scholar
  62. 62.
    J. Appel, Phys. Rev. 125, 1815 (1962).MATHCrossRefGoogle Scholar
  63. 63.
    M. Luong and A. W. Shaw, Phys. Rev. B 4, 2436 (1971).CrossRefGoogle Scholar
  64. 64.
    R. A. Hopfel, J. Shah, P. A. Wolff, and A. C. Gossard, Phys. Rev. B 37, 6941 (1988).CrossRefGoogle Scholar
  65. 65.
    P. Van Halen and D. L. Pulfrey, J. Appl. Phys. 59, 2264 (1986).CrossRefGoogle Scholar
  66. 66.
    D. L. Pulfrey, private communication.Google Scholar
  67. 67.
    J. R. Meyer and F. J. Bartoli, Phys. Rev. B 36, 5989 (1987).CrossRefGoogle Scholar
  68. 68.
    H. J. Lee and D. C. Look, J. Appl. Phys. 54, 4446 (1983).CrossRefGoogle Scholar
  69. 69.
    H. Ito and T. Ishibashi, J. Appl. Phys. 65, 5197 (1989).CrossRefGoogle Scholar
  70. 70.
    S. Tiwari and S. L. Wright, Appl. Phys. Lett. 56, 563 (1990).CrossRefGoogle Scholar
  71. 71.
    T. Furuta and M. Tomizawa, Appl. Phys. Lett. 56, 824 (1990).CrossRefGoogle Scholar
  72. 72.
    M. L. Lovejoy, B. M. Keyes, M. E. Klausmeier-Brown, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “Time-of-Flight Measurements of Zero-Field Electron Diffusion in P+-GaAs,” Extended Abstracts for the 22nd International Conference of Solid State Devices and Materials, Sendai, Japan, pages 613–616 (1990).Google Scholar
  73. 73.
    SEDAN Semiconductor Device Analysis, Stanford University, Stanford, California, January 1980 version.Google Scholar
  74. 74.
    These identifications do not imply recommendation or endorsement by the National Institute of Standards and Technology.Google Scholar
  75. 75.
    J. Albers, P. Roitman, and C. L. Wilson, IEEE Trans. Electron Devices ED-30, 1453 (1983).CrossRefGoogle Scholar
  76. 76.
    M. Tomizawa, T. Ishibashi, H. S. Bennett, and J. R. Lowney, Extended Abstracts of the 1991 VLSI Process and Device Modeling Workshop, Oiso, Japan, May 1991 and submitted for publication.Google Scholar
  77. 77.
    D. R. Myers, J. A. Lott, J. R. Lowney, J. F. Klem, and C. P. Tigges, Proceedings of the 1990 International Electron Devices Meeting 90CH2865-4, 759 (1990).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Herbert S. Bennett
    • 1
  • Jeremiah R. Lowney
    • 1
  1. 1.Semiconductor Electronics DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations