Skip to main content

Structures and Phase Transitions in Langmuir Monolayers

  • Chapter

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

Throughout the previous chapters, attention has been focused on the wide variety of structures and phase behaviors characterizing the self-assembly of amphiphilic molecules in aqueous solution (Chapters 1 to 6) and in oil/water mixtures (Chapters 6 to 11). In all cases the organization of amphiphilic (surfactant) molecules has involved one or more three-dimensional aggregates, i.e., globular or cylindrical micelles, vesicles or undulating bilayers, and droplets or bicontinuous phases of microemulsions. As a consequence, elastic (curvature) free energy has played a crucial role in determining the relative stabilities of competing geometries, and the associated phase transitions have been naturally compared and contrasted with those familiar from the usual fluids, liquid crystals, and solids in bulk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. L. Gaines, Jr., Insoluble Monolayers at Liquid-Gas Interfaces (Interscience, New York, 1966); a) I. Langmuir, J. Am. Chem. Soc. 39, 354 (1917); b) I. Langmuir, J. Chem. Phys. 1, 756 (1933).

    Article  Google Scholar 

  2. A. W. Adamson, Physical Chemistry of Surfaces, 4th Ed. ( Wiley, New York, 1982 ), Chap. I V.

    Google Scholar 

  3. S. Ställberg-Stenhagen and E. Stenhagen, Nature 156, 239 (1945).

    Article  ADS  Google Scholar 

  4. E. Stenhagen in Determination of Organic Structures by Physical Methods,W. A. Braude and F. C. Nachod, eds. ( Academic Press, New York, 1955 ).

    Google Scholar 

  5. M. Lundquist, Chem. Ser. 1, 5 (1971).

    Google Scholar 

  6. M. Lundquist, Chem. Ser. 1, 197 (1971).

    Google Scholar 

  7. C. M. Knobler, Adv. Chem. Phys. 77, 397 (1990).

    Article  Google Scholar 

  8. H. Möhwald, Ann Rev. Phys. Chem. 41, 441 (1990).

    Article  ADS  Google Scholar 

  9. R. Peters and K. Beck, Proc. Natl. Acad. Sci. USA 80, 7183 (1983).

    Article  ADS  Google Scholar 

  10. V. von Tscharner and H. M. McConnell, Biophys. J. 36, 409 (1981).

    Article  Google Scholar 

  11. M. Lösche and H. Möhwald, Rev. Sci. Instrum. 55, 1968 (1984).

    Article  ADS  Google Scholar 

  12. B. G. Moore, C. M. Knobler, S. Akamatsu, and F. Rondelez, J. Phys. Chem. 94, 4588, (1990).

    Article  Google Scholar 

  13. V. T. Moy, D. J. Keller, H. E. Gaub, and H. M. McConnell, J. Phys. Chem. 90, 3198 (1986).

    Article  Google Scholar 

  14. X. Qui, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler and J. V. Selinger, Phys. Rev. Lett. 67, 703 (1991).

    Article  ADS  Google Scholar 

  15. K. Kjaer, J. Als-Nielsen, S. A. Helm, P. Tippmann-Krayer and H. Möhwald, Thin Solid Films 159, 17 (1988).

    Article  ADS  Google Scholar 

  16. M. J. Grundy, R. M. Richardson, S. J. Roser, J. Penfold and R. C. Ward, Thin Solid Films 159, 43 (1988).

    Article  ADS  Google Scholar 

  17. One must be aware, however, that substitution of D for H in either the amphiphile or subphase may cause gross changes in the phase behavior. See, e.g., O. Bouloussa and M. Dupeyrat, Biochem. Biophys. Acta 896, 239 (1987)

    Google Scholar 

  18. D. Vaknin, K. Kjaer, J. Als-Nielsen, and M. Lösche, Biophys. J. 59, 1324 (1991).

    Article  Google Scholar 

  19. H. Möhwald, Thin Solid Films 159, 1 (1988).

    Article  ADS  Google Scholar 

  20. S. Barton, A. Goudot, O. Bouloussa, F. Rondelez, B. Lin, F. Novak, A. Acero and S.A. Rice, J. Chem. Phys. 96, 1343 (1992).

    Article  ADS  Google Scholar 

  21. T. Rasing, Y. R. Shen, M. W. Kim, and S. Grubb, Phys. Rev. Lett. 55, 2903 (1985).

    Article  ADS  Google Scholar 

  22. X. Zhao, C. Goh, and K. B. Eisenthal, J. Phys. Chem. 94, 2222 (1990).

    Article  Google Scholar 

  23. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, Phys. Rev. Lett. 59, 1597 (1987).

    Article  ADS  Google Scholar 

  24. R. A. Dluhy, J. Phys. Chem. 90, 1373 (1986).

    Article  Google Scholar 

  25. S. Garoff, H. W. Deckman, J. H. Dunsmuir, M. S. Alvarez and J. M. Bloch, J.de Physique 49, 701 (1986).

    Article  Google Scholar 

  26. A. Fischer, M. Lösche, M. Möhwald and E. Sackmann, J. de Physique Lett. 45, L-785 (1984).

    Google Scholar 

  27. J. K. H. Hörber, C. A. Lang, T. W. Hänsch, W. M. Heckl and H. Möhwald, Chem. Phys. Lett. 145, 151 (1988).

    Article  ADS  Google Scholar 

  28. E. Meyer, L. Howald, R. M. Overney, H. Heinzelmann, J. Frommer, H.-J. Güntherodt, T. Wagner, H. Schier, and S. Roth, Nature 349, 398 (1991).

    Article  ADS  Google Scholar 

  29. G. S. Patil, S. S. Katti, and A. B. Biswas, J. Colloid Interface Sci. 25, 462 (1967).

    Article  Google Scholar 

  30. B. M. Abraham, K. Miyano, J. B. Ketterson, and W. Q. Xu, Phys. Rev. Lett. 51, 1975 (1983).

    Article  ADS  Google Scholar 

  31. P. J. Winch and J. C. Earnshaw, J. Phys.: Condens. Matter 1, 7187 (1989).

    Article  ADS  Google Scholar 

  32. Th. Rasing, H. Hsiung, Y. R. Shen, and M. W. Kim, Phys. Rev. A 37, 2732 (1988).

    Article  ADS  Google Scholar 

  33. S. Hénon and J. Meunier, Rev. Sci. Instrum. 62, 936 (1991).

    Article  ADS  Google Scholar 

  34. D. Hönig and D. Möbius, J. Phys. Chem. 91, 4590 (1991).

    Article  Google Scholar 

  35. S. Akamatsu and F. Rondelez, J. de Physique 1, 1309 (1991).

    Article  ADS  Google Scholar 

  36. M. W. Kim and D. S. Cannell, Phys. Rev. A 13, 411 (1976).

    Article  ADS  Google Scholar 

  37. N. R. Pallas and B. A. Pethica, J. Chem. Soc. Faraday Trans. I 83, 585 (1987).

    Article  Google Scholar 

  38. A detailed discussion of this problem can be found in Ref. 7.

    Google Scholar 

  39. N. R. Pallas and B. A. Pethica, Langmuir 1, 509 (1985).

    Article  Google Scholar 

  40. J. C. Earnshaw and P. J. Winch, J. Phys.: Condens. Matter 2, 8499 (1990).

    Article  ADS  Google Scholar 

  41. A. M. Bibo and I. R. Peterson, Adv. Mater. 2, 151 (1990).

    Article  Google Scholar 

  42. K. Kjaer, J. Als-Nielsen, C. A. Helm, L. A. Laxhuber and H. Möhwald, Phys. Rev. Lett. 58, 2224 (1987).

    Article  ADS  Google Scholar 

  43. C. A. Helm, H. Möhwald, K. Kjaer and J. Als-Nielsen, Europhys. Lett. 4, 697 (1987).

    Article  ADS  Google Scholar 

  44. H. Möhwald, R. M. Kenn, D. Degenhardt. K. Kjaer and J. Als-Nielsen, Physica A 168, 127 (1991).

    Article  Google Scholar 

  45. B. Lin, M. C. Shih, T. M. Bohanon, G. E. Ice and P. Dutta, Phys. Rev. Lett. 65, 191 (1990).

    Article  ADS  Google Scholar 

  46. K. Kjaer, J. Als-Nielsen, C. A. Helm, P. Tippmann-Krayer and H. Möhwald, J. Phys. Chem. 93, 3200 (1989).

    Article  Google Scholar 

  47. R. M. Kenn, C. Böhm, A. M. Bibo, I. R. Peterson, H. Möhwald, J. Als-Nielsen and K. Kjaer, J. Phys. Chem. 95, 2092 (1991).

    Article  Google Scholar 

  48. M. L. Schlossman, D. K. Schwartz, P. S. Pershan, E. H. Kawamoto, G. J. Kellog and S. Lee, Phys. Rev. Lett. 66, 1599 (1991).

    Article  ADS  Google Scholar 

  49. S. W. Barton, B. N. Thomas, E. B. Flom, S. A. Rice, B. Lin, J. B. Peng, J. B. Ketterson and P. Dutta, J. Chem. Phys. 89, 5898 (1988).

    Article  Google Scholar 

  50. B. Lin, J. B. Peng, J. B. Ketterson, P. Dutta, B. N. Thomas, J. Buontempo and S. A. Rice, J. Chem. Phys. 90, 2393 (1989).

    Article  ADS  Google Scholar 

  51. C. M. Knobler, Science 249, 870 (1990).

    Article  ADS  Google Scholar 

  52. H. Bercegol, F. Gallet, D. Langevin and J. Meunier, J. de Physique 50, 2277 (1989).

    Article  Google Scholar 

  53. P. Muller and F. Gallet, Phys. Rev. Lett. 67, 1106 (1991); P. Muller and F. Gallet, J. Phys. Chem. 95, 3257 (1991).

    Article  Google Scholar 

  54. M. L. Mitchell and R. A. Dluhy, J. Am. Chem. Soc. 210, 712 (1988).

    Article  Google Scholar 

  55. A. Fisher and E. Sackmann, J. de Physique 45, 517 (1984).

    Article  Google Scholar 

  56. A. M. Bibo, C. M. Knobler and I. R. Peterson, J. Phys. Chem. 95, 5591 (1991)

    Article  Google Scholar 

  57. S. B. Dierker, R. Pindak, and R. B. Meyer, Phys. Rev. Lett. 56, 1819 (1986).

    Article  ADS  Google Scholar 

  58. L. Onsager, Ann. N. Y. Acad. Sci. 51, 625 (1949).

    Article  ADS  Google Scholar 

  59. See, for example, M. A. Cotter, J. Chem. Phys. 66, 4710 (1977).

    Google Scholar 

  60. A. Halperin, I. Schechter and S. Alexander, J. Chem. Phys. 86, 6550 (1987).

    Article  ADS  Google Scholar 

  61. Z.-Y. Chen, J. Talbot, W. M. Gelbart and A. Ben-Shaul, Phys. Rev. Lett. 61, 1376 (1988).

    Article  ADS  Google Scholar 

  62. D. Kramer, A. Ben-Shaul, Z.-Y. Chen and W. M. Gelbart, J. Chem. Phys. 96, 2236 (1992).

    Article  ADS  Google Scholar 

  63. C. M. Roland, M. J. Zuckermann and A. Georgallas, J. Chem. Phys. 86, 5812 (1987).

    Article  ADS  Google Scholar 

  64. A. Caille, D. Pink, F. de Verteuil and M. J. Zuckermann, Can. J. Phys. 58, 581 (1980).

    Article  ADS  Google Scholar 

  65. J. L. Viovy, W. M. Gelbart and A. Ben-Shaul, J. Chem. Phys. 87, 4114 (1987).

    Article  ADS  Google Scholar 

  66. See, for example, discussion in the review by G. M. Bell, L. L. Combs and L. J. Dunne, Chem. Rev. 81, 15 (1981).

    Article  Google Scholar 

  67. S. Shin, Z.-G. Wang and S. A. Rice, J. Chem. Phys. 92, 1427 (1990).

    Article  ADS  Google Scholar 

  68. P. J. Flory, Principles of Polymer Chemistry (Cornell, 1953 ).

    Google Scholar 

  69. T. L. Hill, Introduction to Statistical Thermodynamics (Addison-Wesley, 1960 ).

    Google Scholar 

  70. R. S. Cantor and P. M. Mcllroy, J. Chem. Phys. 90, 4423 and 4431 (1989).

    Article  ADS  Google Scholar 

  71. K. To, A. Goudot, O. Bouloussa and F. Rondelez, unpublished.

    Google Scholar 

  72. J. Harris and S. A. Rice, J. Chem. Phys. 89, 5898 (1988).

    Article  ADS  Google Scholar 

  73. J. P. Bareman, G. Cordini and M. L. Klein, Phys. Rev. Lett. 60, 2152 (1988).

    Article  ADS  Google Scholar 

  74. See, for example, K. A. Motakabbir and M. Berkowitz, Chem. Phys. Lett. 176, 61 (1991).

    Google Scholar 

  75. M. Townsend, J. Gryko and S. A. Rice, J. Chem. Phys. 82, 4391 (1985).

    Article  ADS  Google Scholar 

  76. H. M. McConnell and V. T. Moy, J. Phys. Chem. 92, 4520 (1988).

    Article  Google Scholar 

  77. A. Miller and H. Möhwald, J. Chem. Phys. 86, 4258 (1987).

    Article  ADS  Google Scholar 

  78. H. M. McConnell, Ann. Rev. Phys. Chem. 42, 171 (1991); J. Phys. Chem. 42, 17, (1991).

    ADS  Google Scholar 

  79. T. K. Vanderlick and H. Möhwald, J. Phys. Chem. 94, 886 (1990).

    Article  Google Scholar 

  80. D. Andelman, F. Brochard and J. F. Joanny, J. Chem. Phys. 86, 3673 (1987).

    Article  ADS  Google Scholar 

  81. D. Andelman, F. Brochard, P. G. de Gennes and J. F. Joanny, C. R. Acad. Sci. (Paris) 301, 675 (1985).

    Google Scholar 

  82. D. Andelman, Mat. Res. Soc. Symp. Proc. 177, 337 (1990).

    Article  Google Scholar 

  83. A. Miller and H. Möhwald, Europhys. Lett. 2, 67 (1986).

    Article  ADS  Google Scholar 

  84. M. Flörsheimer and H. J. Möhwald, Chem. Phys. Lipids 49, 231 (1989).

    Article  Google Scholar 

  85. S. Subramaniam and H. M. McConnell, J. Phys. Chem. 91, 1715 (1987).

    Article  Google Scholar 

  86. M. Seul and M. J. Sammon, Phys. Rev. Lett. 64, 1903 (1991).

    Article  ADS  Google Scholar 

  87. T. Garel and S. Doniach, Phys. Rev. B 26, 325 (1982).

    Article  ADS  Google Scholar 

  88. C. Kooy and U. Enz, Phillips Res. Rep. 15,7 (1960); M. Seul, unpublished.

    Google Scholar 

  89. R. E. Rosensweig, Ferrohydrodynamics (Cambridge, 1985 ).

    Google Scholar 

  90. C. A. Helm and H. Möhwald, J. Phys Chem. 92, 1261 (1988).

    Article  Google Scholar 

  91. M. Lösche, H.-P. Duwe and H. Möhwald, J. Colloid Interface Sci. 126, 432 (1988).

    Article  Google Scholar 

  92. K. To, S. Akamatsu and F. Rondelez, unpublished.

    Google Scholar 

  93. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).

    Article  ADS  Google Scholar 

  94. S. A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175 (1975).

    Google Scholar 

  95. S. A. Brazovskii, Soy. Phys. JETP 41, 85 (1975).

    ADS  Google Scholar 

  96. The exact summation of the inter-stripe electrostatic interactions is performed in Ref. 94 and is shown also in Ref. 80. In Ref. 78, the identical inter-stripe contribution is expressed as an infinite sum. Taking only the first few terms in the infinite sum gives qualitatively similar results.

    Google Scholar 

  97. D. J. Keller, H. M. McConnell and V. T. Moy, J. Phys. Chem. 90, 2311 (1986).

    Article  Google Scholar 

  98. P. G. de Gennes, C. R. Acad. Sci. (Paris) 290, 119 (1980).

    Google Scholar 

  99. V. G. Levich, Physicochemical Hydrodynamics ( Prentice Hall, New York, 1962 ).

    Google Scholar 

  100. P. G. de Gennes, in Physics of Disordered Materials, D. Adler, H. Fritzsche, and S. R. Ovshinsky, eds. ( Plenum, New York, 1985 ), p. 227.

    Google Scholar 

  101. J. Crank, The Mathematics of Diffusion ( Clarendon Press, Oxford, 1975 ).

    Google Scholar 

  102. J. D. Gunton, J. M. San Miguel and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol 8, C. Domb and J. Lebowitz, eds. ( Academic Press, New York, 1983 ).

    Google Scholar 

  103. J. D. Gunton and M. Droz, Introduction to the Theory of Metastable and Unstable States ( Springer, Heidelberg, 1983 ).

    Book  Google Scholar 

  104. J. Lucassen, Trans. Faraday Soc. 64, 2221 (1968).

    Article  Google Scholar 

  105. L. Kramer, J. Chem. Phys. 55, 2097 (1971).

    Article  ADS  Google Scholar 

  106. F. Brochard, J. F. Joanny, D. Andelman, in Physics of Amphiphilic Layers, J. Meunier, D. Langevin and N. Boccara, eds. ( Springer, Heidelberg, 1987 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Andelman, D., Brochard, F., Knobler, C., Rondelez, F. (1994). Structures and Phase Transitions in Langmuir Monolayers. In: Gelbart, W.M., Ben-Shaul, A., Roux, D. (eds) Micelles, Membranes, Microemulsions, and Monolayers. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8389-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8389-5_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8391-8

  • Online ISBN: 978-1-4613-8389-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics