Statistical Thermodynamics of Amphiphile Self-Assembly: Structure and Phase Transitions in Micellar Solutions

  • Avinoam Ben-Shaul
  • William M. Gelbart
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)

Abstract

The main purpose of this chapter is to present a comprehensive, statistical-thermodynamic framework for treating the sizes and shapes of micellar aggregates in aqueous surfactant solutions. In this first section, after a brief historical perspective on experimental studies and theoretical pictures of micellar structure, surface roughness and other fluctuation effects are discussed in the context of both phenomenological and computer simulation studies. In Sec. 1.2 we present the basic self-assembly theory for dilute systems; the aim is to proceed systematically from a formulation of overall partition functions for the aqueous surfactant solution to a phenomenological discussion of effective chemical potentials. By deriving this latter language, we make contact with the highly useful “law of mass action” approach which has been pursued by most workers in their analyses of micellization and size/shape effects in dilute solution. We also feature there the role of “dimensionality of growth”, i.e., the basic differences between the concentration dependence of equilibrium sizes in the case of sphere (“zero-dimensional” = 0D)-, rod (1D)-, and disk (2D)-like aggregates. Following a brief discussion of the structures and relative stabilities of vesicles and mixed micelles, we close Sec. 1.2 with some remarks on the much-neglected and highly problematic question of “rotation/translation” contributions to micellar partition functions (and hence to the effective surfactant chemical potentials).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. McBain, Trans. Faraday Soc. 9, 99 (1913).Google Scholar
  2. 2.
    P. Debye, Ann. New York Acad. Sci. 51, 575 (1949)ADSGoogle Scholar
  3. P. Debye, J. Phys. Colloid Chem. 51, 18 (1947).Google Scholar
  4. 3.
    D. J. Shaw, Introduction to Colloid and Surface Chemistry (Butter-worths, London, 1970).Google Scholar
  5. 4.
    P. Debye and E. W. Anacker, J. Phys. Colloid Chem. 55,644 (1951).Google Scholar
  6. 5.
    S. Hayashi and S. Ikeda, J. Phys. Chem. 84, 744Google Scholar
  7. S. Ikeda, S. Hayashi and T. Imae, J. Phys. Chem. 85, 106 (1981) and reference contained therein.Google Scholar
  8. 6.
    B. B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley, New York, 1976).Google Scholar
  9. 7.
    N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem. 80, 1075 (1976)Google Scholar
  10. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek and M. C. Carey, ibid. 82, 1375 (1978) and 84, 1044 (1980).Google Scholar
  11. N. A. Mazer in Dynamic Laser Scattering: Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1981).Google Scholar
  12. 8.
    M. Corti and V. Degiorgio, in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins and E. R. Pike, eds. (Plenum, New York, 1977), p. 450Google Scholar
  13. M. Corti and V. Degiorgio,Ann. Phys. (Paris) 3 303 (1978)Google Scholar
  14. M. Corti and V. Degiorgio,J. Phys. Chem. 85 711 (1981).Google Scholar
  15. 9.
    G. K. Batchelor, J. Fluid Mech. 74, 1 (1976)MathSciNetADSMATHGoogle Scholar
  16. B. U. Felderhof, J. Phys. A11, 929 (1978).MathSciNetADSGoogle Scholar
  17. 10.
    See papers by G. B. Benedek, N. A. Mazer, D. F. Nicoli, M. Corti and V. Degiorgio in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti, eds. (North Holland, Amsterdam, 1985).Google Scholar
  18. 11..
    S. Ozeki and S. Ikeda, J. Colloid Interface Sci. 77, 219 (1980)Google Scholar
  19. H. Hoffmann, G. Platz and W. Ulbricht, J. Phys. Chem. 85, 1418 (1981)Google Scholar
  20. R. Nagarajan, J. Colloid Interface Sci. 90, 477 (1982) and papers cited therin.Google Scholar
  21. 12.
    D. F. Nicoli, J. G. Elias and D. Eden, J. Phys. Chem. 85, 2866 (1981)Google Scholar
  22. W. Schorr and H. Hoffmannibid. 85, 3160 (1981).Google Scholar
  23. 13.
    See, for example, S. H. Chen, Ann. Rev. Phys. Chem. 37, 351 (1986)Google Scholar
  24. W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering (Oxford, 1971).Google Scholar
  25. 14.
    J. B. Hayter and J. Penfold, Colloid and Polymer Sci. 261, 1022 (1983).Google Scholar
  26. 15.
    B. Cabane, R. Duplessix and T. Zemb, in Surfactants in Solution, B. Lindman and K. L. Mittal, eds. (Plenum, New York, 1984), Vol. 1,p. 373.Google Scholar
  27. 16.
    J. B. Hayter, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti, eds. (North Holland, Amsterdam, 1985).Google Scholar
  28. 17.
    B. Cabane, R. Duplessix and T. Zemb, J. de Physique 46, 2161 (1985).Google Scholar
  29. 18.
    B. Jacrot, Rep. Prog. Phys. 39, 911 (1976)ADSGoogle Scholar
  30. H. B. Sturman and A. J. Miller, J. Appl. Cryst. 11, 325 (1978).Google Scholar
  31. 19.
    See, for example: D. Bendedouch, S. H. Chen and W. C. Koehler, J. Phys. Chem. 87, 153 and 2671 (1983).Google Scholar
  32. 20.
    J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).ADSGoogle Scholar
  33. 21(a).
    V. Luzzati, H. Mustacchi and A. Skoulios, Nature 180, 600 (1957)ADSGoogle Scholar
  34. (b).
    V. Luzzati, H. Mustacchi and A. Skoulios Disc. Faraday Soc. 25, 43 (1958)Google Scholar
  35. (c).
    V. Luzzati, M. Mustacchi, A. Skoulios and F. Husson, Acta Cryst. 13 660 (1960)Google Scholar
  36. (d).
    F. Husson, H. Mustacchi and V. Luzzati, Acta Cryst. 13, 668 (1960).Google Scholar
  37. 22.
    V. Luzzati, in Biological Membranes, D. Chapman, ed. (Academic Press, New York, 1968), p. 71.Google Scholar
  38. 23.
    See references 21 and 22 and G. L. Kirk, S. M. Gruner and D. L. Stein, Biochemistry 23, 1093 (1984)Google Scholar
  39. S. M. Gruner, M. W. Tate, G. L. Kirk, P. T. C. So, D. C. Turner, D. T. Keane, C. P. S. Tilcock and P. R. Cullis, Biochemistry 27,2853 (1988), and other work cited therein.Google Scholar
  40. 24.
    E. Sternin, B. Fine, M. Bloom, C. P. S. Tilcock, K. F. Wong and P. R. Cullis, Biophys. J. 54, 689 (1988). See also Ref. 126 below.Google Scholar
  41. 25.
    A. Parsegian, Trans. Faraday Soc. 62, 848 (1966)Google Scholar
  42. D. Mather, J. Colloid Interface Sci. 57, 240 (1976)Google Scholar
  43. B. Jönsson and H. Wenner-ström, ibid. 80, 482 (1981).Google Scholar
  44. 26.
    See, for example: G. Lahajnar, S. Zumer, M. Vilfan, R. Blinc and L. W. Reeves, Mol. Cryst. Liq. Cryst. 113, 85 (1984)Google Scholar
  45. P. J. Photinos, L. J. Yu and A. Saupe, ibid. 67, 277 (1981)Google Scholar
  46. G. Chidichimo, L. Coppola, C. LaMesa, G. A. Ranieri and A. Saupe, Chem. Phys. Lett. 145, 85 (1988).ADSGoogle Scholar
  47. 27.
    C. Bagdassarian, W. M. Gelbart and A. Ben-Shaul, J. Stat. Phys. 52, 1307 (1988).ADSGoogle Scholar
  48. 28.
    M. C. Holmes and J. Charvolin, J. Phys. Chem. 88, 810 (1984)Google Scholar
  49. M. C. Holmes, D. J. Reynolds and N. Boden, J. Phys. Chem. 91, 5257 (1987)Google Scholar
  50. P. Kekicheff, B. Cabane and M. Rawiso, J. de Physique Lett. 45, 813 (1984)Google Scholar
  51. P. Kekicheff and G. J. T. Tiddy, J. Phys. Chem. 93, 2520 (1989).Google Scholar
  52. 29.
    D. W. R. Gruen, Prog. Colloid Polymer Sci. 70, 6 (1985).Google Scholar
  53. Y. Chevalier and T. Zemb, Rep. Prog. Phys. 53, 279 (1990).ADSGoogle Scholar
  54. 30.
    C. Tanford, The Hydrophobic Effect, 2nd edition (Wiley, New York, 1980).Google Scholar
  55. 31.
    J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc., Faraday Trans. 272, 1525 (1976)Google Scholar
  56. J. N. Israelachvili, S. Marcelja and R. G. Horn, Quart. Rev. Biophys. 13, 121 (1980)Google Scholar
  57. J. N. Israelachvili, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti, eds. (North Holland, Amsterdam, 1985).Google Scholar
  58. 32.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1985).Google Scholar
  59. 33.
    H. Wennerström and B. Lindman, Physics Reports 52, 1 (1979).ADSGoogle Scholar
  60. 34.
    F. M. Menger and D. W. Doll, J. Am. Chem. Soc. 106, 1109 (1984)Google Scholar
  61. F. M. Menger, Acc. Chem. Res. 12, 111 (1974).Google Scholar
  62. F. Menger, Angew. Chem. Int. Ed. Engl. 30, 1086 (1991), for a revised version of his picture of the micelle.Google Scholar
  63. 35.
    P. Fromherz, Chem. Phys. Lett. 77, 460 (1981).ADSGoogle Scholar
  64. 36.
    S. W. Haan and L. R. Pratt, Chem. Phys. Lett. 79, 436 (1981)ADSGoogle Scholar
  65. B. Owenson and R. L. Pratt, J. Phys. Chem. 88, 2905, 6048 (1984).Google Scholar
  66. 37.
    J. M. Haile and J. P. O’connell, J. Phys. Chem. 90, 1875 (1986).Google Scholar
  67. 38.
    B. Jönsson, O. Edholm and O. Teleman, J. Phys. Chem. 85, 2259 (1986).Google Scholar
  68. 39.
    K. Watanabe, M. Ferrario and M. L. Klein, J. Phys. Chem. 92, 819 (1988).Google Scholar
  69. 40.
    B. Smit, P. A. J. Hilbers, K. Esselink, L. A. Rupert, N. M. van Os and N. M. Schlijper, J. Phys. Chem. 95, 6361 (1991)Google Scholar
  70. B. Smit, P. A. J. Hilbers, K. Esselink, L. A. Rupert, N. M. van Os and N. M. Schlijper, Nature 348, 624 (1990).ADSGoogle Scholar
  71. 41(a).
    S. Karaborni and J. P. O’Connell, J. Phys. Chem. 94, 2624 (1990)Google Scholar
  72. S. Karaborni and J. P. O’Connell, Langmuir 6, 905 (1990)Google Scholar
  73. (b).
    J. J. Wendoloski, S. J. Kimatian, L. E. Schutt and F. R. Salemme, Science 243, 636 (1989).ADSGoogle Scholar
  74. 42.
    F. F. Abraham, Homogeneous Nucleation Theory (Academic Press, New York, 1974).Google Scholar
  75. 43.
    J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2082 (1962), 45, 630 (1966) and 48, 1849 (1968).Google Scholar
  76. 44.
    H. Reiss, Adv. Colloid Interface Sci. 7, 1 (1977)Google Scholar
  77. H. Reiss, J. L. Katz and E. R. Cohen, J. Chem. Phys. 48, 5553 (1968).ADSGoogle Scholar
  78. 45.
    H. Reiss, A. Tabazadeh and J. Talbot, J. Chem. Phys. 92, 1266 (1990).ADSGoogle Scholar
  79. 46.
    F. H. Stillinger, J. Chem. Phys. 78, 4654 (1983).ADSGoogle Scholar
  80. 47.
    K. A. Dawson, B. L. Walker and A. Berera, Physica A 165, 320 (1990)ADSGoogle Scholar
  81. A. Berera and K. A. Dawson, Phys. Rev. A 42, 3618 (1990)ADSGoogle Scholar
  82. R. G. Larson, J. Chem. Phys. 91, 2479 (1989), 89, 1642 (1988)Google Scholar
  83. R. G. Larson, L. E. Scriven and H. T. Davis, J. Chem. Phys. 83, 2411 (1985)ADSGoogle Scholar
  84. C. M. Care, J. Phys. C 20, 689 (1987)ADSGoogle Scholar
  85. T. Kawakatsu and K. Kawasaki, J. Colloid Interface Sci. 145, 413, 420 (1991)Google Scholar
  86. D. Chowdhury and D. Stauffer, Phys. Rev. A 44, 2247 (1991)ADSGoogle Scholar
  87. G. Gompper and M. Schick, Chap. 8 and references to earlier work contained therein.Google Scholar
  88. 48.
    C. A. J. Hoeve and G. C. Benson, J. Phys. Chem. 61, 1149 (1957).Google Scholar
  89. 49.
    R. H. Aranow, J. Phys. Chem. 67, 556 (1963).Google Scholar
  90. 50.
    A. Wulf, J. Phys. Chem. 82, 804 (1978).Google Scholar
  91. 51.
    D. C. Poland and H. A. Scheraga, J. Colloid Interface Sci. 21, 273 (1966)Google Scholar
  92. D. C. Poland and H. A. Scheraga,J. Phys. Chem. 69, 2431 (1965).Google Scholar
  93. 52.
    R. Nagarajan and E. Ruckenstein, J. Colloid Interface Sci. 60, 221 (1977) and 71, 580 (1979)Google Scholar
  94. R. Nagarajan and E. Ruckenstein, Langmuir 7, 2934 (1991) for a recent comprehensive theoretical approach by the same authors.Google Scholar
  95. 53.
    D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 277, 601 (1981).Google Scholar
  96. 54.
    W. E. McMullen, W. M. Gelbart and A. Ben-Shaul, J. Phys. Chem. 88, 6649 (1984).Google Scholar
  97. 55.
    B. Halle, M. Lundgren and B. Jönsson, J. de Physique 49, 1235 (1988).Google Scholar
  98. 56.
    T. L. Hill, Thermodynamics of Small Systems, Vols. I and II (Benjamin, New York, 1963).Google Scholar
  99. 57.
    D. G. Hall and B. A. Pethica, Chap. 16 in Nonionic Surfactants, M. J. Schick, ed. (Dekker, New York, 1967)Google Scholar
  100. D. G. Hall, in Nonionic Surfactants, M. J. Schick, ed. (Marcel Dekker, New York, 1987), p. 247.Google Scholar
  101. 58.
    D. Stigter, J. Colloid Interface Sci. 41, 473 (1974).Google Scholar
  102. 59.
    K. Shinoda and E. Hutchinson, J. Phys. Chem. 66, 577 (1962).Google Scholar
  103. 60.
    S. Ljunggren and J. C. Eriksson, Progr. Colloid and Polymer Sci. 74, 38 (1987).Google Scholar
  104. 61.
    S. Ljunggren and J. C. Eriksson, J. Chem. Soc. Faraday Trans. 2 82, 913 (1986) and 80, 489 (1984)Google Scholar
  105. J. C. Eriksson, S. Ljunggren and U. Henriksson, ibid. 81, 833, 1209 (1985).Google Scholar
  106. 62.
    I. Reich, J. Phys. Chem. 60, 257 (1956).Google Scholar
  107. 63.
    P. Mukerjee, J. Phys. Chem. 76, 565 (1972), and review in Micellization,Solubilization, and Microemulsions, K. L. Mittal, ed. (Plenum, New York, 1977).Google Scholar
  108. 64.
    P. J. Missell, N. A. Mazer, G. B. Benedek, C. Y. Young and M. C. Carey, J. Phys. Chem. 84, 1044 (1980); see also G. B. Benedek in Ref. 10.Google Scholar
  109. 65.
    G. Porte and J. Appell, J. Phys. Chem. 85, 511 (1981).Google Scholar
  110. 66.
    See G. Porte, Chap. 2 in this volume and references therein.Google Scholar
  111. 67.
    J.-M. Chen, T.-M. Su and C. Y. Mou, J. Phys. Chem. 90, 2418 (1986).Google Scholar
  112. 68.
    W. E. McMullen, A. Ben-Shaul and W. M. Gelbart, J. Colloid Interface Sci. 98, 523 (1984).Google Scholar
  113. 69.
    L. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1968).Google Scholar
  114. 70.
    D. Blankschtein, G. M. Thurston and G. B. Benedek, Phys. Rev. Lett. 54, 955 (1985)ADSGoogle Scholar
  115. D. Blankschtein, G. M. Thurston and G. B. Benedek,J. Chem. Phys. 85, 7268 (1986)ADSGoogle Scholar
  116. S. Puvvada and D. Blankschtein, J. Phys. Chem. 93, 7753 (1989).Google Scholar
  117. 71.
    S. A. Safran, P. A. Pincus, M. E. Cates and F. C. MacKintosh, J. de Physique 51, 502 (1990).Google Scholar
  118. 72.
    G. Porte, J. Appell and Y. Poggi, J. Phys. Chem. 84, 3105 (1980)Google Scholar
  119. G. Porte, J. Appell and Y. Poggi, J. Colloid Interface Sci. 87, 492 (1982).Google Scholar
  120. 73.
    J. Appell and G. Porte, Europhys. Lett. 12, 185 (1990).ADSGoogle Scholar
  121. 74.
    S. J. Candau, E. Hirsch, R. Zana, J. de Physique 45, 1263 (1984)Google Scholar
  122. S. J. Candau, E. Hirsch, R. Zana, J. Colloid Interface Sci. 105, 521 (1985).Google Scholar
  123. 75.
    H. Rehage, H. Hoffmann, J. Phys. Chem. 92, 4712 (1988)Google Scholar
  124. H. Rehage, H. Hoffmann,Faraday Discuss. Chem. Soc. 76, 363 (1983).Google Scholar
  125. 76.
    G. Warr, L. Magid, E. Caponetti and C. Martin, Langmuir 4, 813 (1988).Google Scholar
  126. 77.
    M. E. Cates and S. J. Candau, J. Phys.: Condens. Matter 2, 6869 (1990), and references therein.ADSGoogle Scholar
  127. 78.
    S. Safran, L. Turkevich and P. Pincus, J. de Physique Lett. 45, L-69 (1984).Google Scholar
  128. 79.
    T. M. Clausen, P. K. Vinson, J. R. Minter, H. T. Davis, Y. Talmon and W. G. Miller, J. Phys. Chem. 96, 474 (1992).Google Scholar
  129. 80.
    R. Nagarajan, J. Colloid Interface Sci. 90, 477 (1982).Google Scholar
  130. 81.
    R. Messager, A. Ott, D. Chatenay, W. Urbach and D. Langevin, Phys. Rev. Lett. 60, 1410 (1988).ADSGoogle Scholar
  131. 82.
    M. Borkovec, J. Chem. Phys. 91, 6268 (1989).ADSGoogle Scholar
  132. 83.
    W. Helfrich, J. de Physique 47, 321 (1986)MathSciNetGoogle Scholar
  133. L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1960 (1985) for further discussion of k renormalization.Google Scholar
  134. 84.
    E. W. Kaler, A. K. Murphy, B. E. Rodriguez and J. A. N. Zasadzinski. Sci. 245, 1371 (1989).ADSGoogle Scholar
  135. 85.
    D. Lichtenberg and Y. Barenholtz, in Methods of Biochemical Analyses 33, 337 (1988)Google Scholar
  136. D. Lichtenberg in Handbook of Biological Membranes, M. Shinitsiky, ed. (Balaban, Rehovot, 1992).Google Scholar
  137. 86.
    S. A. Safran, P. Pincus and D. Andelman, Science 248, 354 (1990)ADSGoogle Scholar
  138. H. Wennerström and D. M. Anderson in Statistical Thermodynamics and Differential Geometry of Microstructured Material (Springer, in press).Google Scholar
  139. 87.
    D. D. Lasic, F. G. Martin, J. M. Neugebauer and J. P. Krathovil, J. Colloid Interface Sci. 133, 539 (1989).Google Scholar
  140. 88.
    A. Ben-Shaul, D. H. Rorman, G. V. Hartland and W. M. Gelbart, J. Phys. Chem. 90, 5277 (1988).Google Scholar
  141. 89.
    R. Nagarajan, Langmuir 1, 331 (1985).Google Scholar
  142. 90.
    M. M. Stecker and G. B. Benedek, J. Phys. Chem. 88 6519 (1984).Google Scholar
  143. 91.
    T.-L. Lin, S.-H. Chen, N. E. Gabriel and M. F. Roberts, J. Phys. Chem. 91 406 (1987).Google Scholar
  144. 92(a).
    See, e.g.: P. Schurtenberger, N. A. Mazer and W. Känzig, J. Phys. Chem. 89, 1042 (1985)Google Scholar
  145. (b).
    S. Almog, T. Kushnir, S. Nir and D. Lichtenberg, Biochemistry 25, 2597 (1986) (see also Ref. 85)Google Scholar
  146. (c).
    P. Vinson, Y. Talmon and A. Watter, Biophys. J. 56, 669 (1989) and references cited therein.Google Scholar
  147. 93.
    Y. Hendrikx, J. Charvolin and M. Rawiso, J. Colloid Interface Sci. 100, 597 (1984)Google Scholar
  148. J. M. Pope and J. W. Doane, J. Chem. Phys. 87, 3201 (1987).ADSGoogle Scholar
  149. 94.
    See, e.g., T. L. Hill, An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960)Google Scholar
  150. D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1973).Google Scholar
  151. 95.
    P. van der Ploeg and H. J. C. Berendsen, Mol. Phys. 49, 233 (1983)ADSGoogle Scholar
  152. J. Chem. Phys. 76 3271 (1982)Google Scholar
  153. O. Edholm, H. J. C. Berendsen and P. van der Ploeg, Mol. Phys. 2, 379 (1983).ADSGoogle Scholar
  154. 96.
    E. Egberts and H. J. C. Berendsen, J. Chem. Phys. 89, 3718 (1988).ADSGoogle Scholar
  155. 97.
    G. Cardini, J. P. Bareman and M. Klein, Chem. Phys. Lett. 145, 493 (1988) and Phys. Rev. Lett. 60, 2152 (1988).Google Scholar
  156. 98.
    J.-P. Ryckaert, M. L. Klein and I. R. McDonald, Phys. Rev. Lett. 58, 698 (1987).ADSGoogle Scholar
  157. 99.
    J. Harris and S. Rice, J. Chem. Phys. 89, 5898 (1988).ADSGoogle Scholar
  158. 100.
    J. Hautman and M. L. Klein, J. Chem. Phys. 91, 4494 (1989) and 93, 7483 (1990).Google Scholar
  159. 101.
    A. Biswas and B. L. Schurmann, J. Chem. Phys. 95, 5377 (1991).ADSGoogle Scholar
  160. 102.
    D. Brown and J. H. R. Clarke, J. Phys. Chem. 92, 2881 (1988).Google Scholar
  161. 103.
    B. Smit, A. G. Schlijper, L. A. M. Rupert and N. M. van Os, J. Phys. Chem. 94, 6933 (1990)Google Scholar
  162. B. Smit, Phys. Rev. A 37, 3431 (1988)ADSGoogle Scholar
  163. B. Smit, Ph.D. Thesis, Rijksuniversiteit Utrecht, The Netherlands (1990).Google Scholar
  164. 104.
    P. W. Pastor, R. M. Venable and M. Karplus, J. Chem. Phys. 89, 1112 (1988).ADSGoogle Scholar
  165. 105.
    M. Milik, A. Kolinski and J. Skolnick, J. Chem. Phys. 93, 4440 (1990).ADSGoogle Scholar
  166. 106.
    B. Jönsson and H. Wennerström, J. Phys. Chem. 91, 3381 (1987).Google Scholar
  167. 107.
    M. Winterhalter and W. Helfrich, J. Phys. Chem. 92, 6865 (1988) and 96, 327 (1992)Google Scholar
  168. M. Koslov and M. Winterhalter, J. de Physique 2, 175 (1992).ADSGoogle Scholar
  169. 108.
    H. N. W. Lekkerkerker, Physica A 159, 319 (1989)ADSGoogle Scholar
  170. D. J. Mitchell and B. W. Ninham, Langmuir 5, 1121 (1989).Google Scholar
  171. 109.
    D. Stigter and K. A. Dill, Langmuir 2, 791 (1986), 4, 200 (1986)Google Scholar
  172. K. A. Dill and D. Stigter, Biochemistry 27, 3446 (1988).Google Scholar
  173. 110.
    S.-H. Chen and R. Rajagopalan, eds., Micellar Solutions and Microemulsions (Springer, New York, 1990).Google Scholar
  174. 111.
    B. Jönsson and H. Wennerström, in Ref. 110 and references cited therein.Google Scholar
  175. 112.
    S. Puvvada and D. Blankschtein, J. Chem. Phys. 92, 3710 (1990) and in the Proceedings of the 8th Symposium on “Surfactants in Solution” (Gainesville, 1990)ADSGoogle Scholar
  176. G. Briganti, S. Puvvada and D. Blankschtein, J. Phys. Chem. 95, 8989 (1991). A recent extension of their molecular thermodynamic theory to mixed micellar solution has recently been presented by Puvvada and BlankschteinGoogle Scholar
  177. see, e.g., the Proceedings of the Symposium on “Mixed Surfactant Systems” (Oklahoma, 1991).Google Scholar
  178. 113.
    S. Marcelja, J. Chem. Phys. 60, 3599 (1974)ADSGoogle Scholar
  179. S. Marcelja,Biochem. Biophys. Acta 367, 165 (1974).Google Scholar
  180. 114.
    B. Lemaire and P. Bothorel, J. Polym. Sci. Polym. Phys. Ed. 20, 867 (1982)Google Scholar
  181. B. Lemaire and P. Bothorel, Macromolecules 13, 311 (1980).ADSGoogle Scholar
  182. 115.
    D. W. R. Gruen and E. H. B. de Lacey, in Surfactants and Solution, K. L. Mittal and B. Lindman, eds. (Plenum, New York, 1984) Vol. 1, p. 559.Google Scholar
  183. 116.
    D. W. R. Gruen, J. Phys. Chem. 89, 146, 153 (1985).Google Scholar
  184. See also J. Colloid Interface Sci. 84, 281 (1981).Google Scholar
  185. 117.
    K. A. Dill and P. J. Flory, Proc. Natl. Acad. Sci. USA, 77, 3115 (1980) and 78, 676 (1981).MathSciNetGoogle Scholar
  186. 118.
    K. A. Dill and R. S. Cantor, Macromolecules 17, 380, 384 (1984)ADSGoogle Scholar
  187. K. A. Dill, D. W. Koppel, R. S. Cantor, J. D. Dill, D. Bendedouch and S.-H. Chen, Nature 309, 42 (1984).ADSGoogle Scholar
  188. 119.
    K. A. Dill, J. Naghizadeh and J. A. Marqusee, Ann. Rev. Phys. Chem. 39, 425 (1988).ADSGoogle Scholar
  189. 120..
    A. Ben-Shaul, I. Szleifer and W. M. Gelbart, J. Chem. Phys. 83, 3597 (1985)ADSGoogle Scholar
  190. see also Ref. 10, p. 404 and Proc. Natl. Acad. Sci. USA 81, 4601 (1984).Google Scholar
  191. 121.
    For a review, see A. Ben-Shaul and W. M. Gelbart, Ann. Rev. Phys. Chem. 36, 179 (1985).Google Scholar
  192. A. Ben-Shaul, I. Szleifer and W. M. Gelbart, in Surfactants in Solution, K. L. Mittal, P. Bothorel, eds. (Plenum, New York, 1986), Vol. 4, p. 429.Google Scholar
  193. 122.
    I. Szleifer, A. Ben-Shaul and W. M. Gelbart, J. Chem. Phys. 83, 3612 (1985), 85 5345 (1986) and 86 7094 (1987).Google Scholar
  194. 123.
    J. L. Viovy, W. M. Gelbart and A. Ben-Shaul, J. Chem. Phys. 87 4114 (1987).ADSGoogle Scholar
  195. 124.
    I. Szleifer, A. Ben-Shaul and W. M. Gelbart, J. Phys. Chem. 94 5081 (1990).Google Scholar
  196. 125.
    I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart and S. A. Safran, J. Chem. Phys. 92 6800 (1990)ADSGoogle Scholar
  197. I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux and W. M. Gelbart, Phys. Rev. Lett. 60 1966 (1988)ADSGoogle Scholar
  198. A. Ben-Shaul, I. Szleifer and W. M. Gelbart in Ref. 136Google Scholar
  199. I. Szleifer, Ph.D. Thesis, Hebrew University, Jerusalem (1988).Google Scholar
  200. 126.
    L. Steenhuizen, D. Kramer and A. Ben-Shaul, J. Phys. Chem. 95 7477 (1991).Google Scholar
  201. 127.
    F. A. M. Leermakers, J. M. H. M. Scheutjens and J. Lyklema, Biophys. Chem. 18 353 (1983)Google Scholar
  202. F. A. M. Leermakers, Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands (1988).Google Scholar
  203. 128.
    J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83 1619 (1979).Google Scholar
  204. 129.
    P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).Google Scholar
  205. 130.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986), 2nd edition.Google Scholar
  206. 131.
    J. Seelig and W. Niederberger, Biochem. 13 1585 (1974).Google Scholar
  207. 132.
    W. Helfrich, Z. Naturforsch 693 (1973).Google Scholar
  208. 133.
    W. Helfrich, in Physics of Defects, Les Houches, Session XXXV, R. Balian, M. Kleman and J. P. Poirier, eds. (North Holland, Amster-dam, 1981).Google Scholar
  209. 134.
    E. A. Evans and R. Skalak, CRC Crit. Rev. Bioeng. 3 181 (1979).Google Scholar
  210. 135.
    A. G. Petrov and I. Bivas, Prog. Surf. Sci. 16 389 (1984).ADSGoogle Scholar
  211. 136.
    J. Meunier, D. Langevin and N. Boccara, eds., Physics of Amphiphilic Layers (Springer, Berlin, 1987).Google Scholar
  212. 137.
    H.-P. Duwe and E. Sackmann, Physica A 163 410 (1990)ADSGoogle Scholar
  213. H.-P. Duwe, J. Kaes and E. Sackmann, J. de Physique 51 945 (1990).Google Scholar
  214. 138.
    C. R. Safinya, E. B. Sirota, D. Roux and G. S. Smith, Phys. Rev. Lett. 62 1134 (1989).ADSGoogle Scholar
  215. 139.
    J.-M. DiMeglio, in Ref. 136Google Scholar
  216. J.-M. DiMeglio, M. Dvolaitzki and C. Taupin, J. Phys. Chem. 89, 871 (1985).Google Scholar
  217. 140.
    J. Meunier, J. de Physique Lett. 46, L-1005 (1985)Google Scholar
  218. J. Phys.: Condens. Matter 2, SA347 (1990).Google Scholar
  219. 141.
    P. G. DeGennes and C. Taupin, J. Phys. Chem. 56, 2294 (1982).Google Scholar
  220. 142.
    See, e.g., J. F. Lennon and F. Brochard, J. de Physique 36, 1035 (1975)Google Scholar
  221. I. Bivas, P. Hanusee, P. Bothorel, J. Lalanne and O. Aquerre-Charid, ibid. 48, 855 (1987).Google Scholar
  222. 143.
    K. Zeman, M. Engelhard and E. Sackmann, Eur. Biophys. J. 18, 203 (1990)Google Scholar
  223. K. Berndl, J. Kaes, R. Lipowsky, V. Seifert and E. Sackmann, Europhys. Lett. 13, 659 (1990).ADSGoogle Scholar
  224. 144.
    S. T. Milner and T. A. Witten, J. de Physique 49, 1951 (1988).Google Scholar
  225. 145.
    Z.-G. Wang and S. A. Safran, J. de Physique 51, 185 (1990)Google Scholar
  226. Z.-G. Wang and S. A. Safran, J. Chem. Phys. 94, 679 (1991).ADSGoogle Scholar
  227. 146.
    R. S. Cantor, Macromolecules 14, 1186 (1981).ADSGoogle Scholar
  228. 147.
    W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 (1945).ADSGoogle Scholar
  229. 148.(a).
    A. Ben-Shaul and W. M. Gelbart, J. Phys. Chem. 86, 311 (1982)Google Scholar
  230. (b).
    W. M. Gelbart, A. Ben-Shaul, W. E. McMullen and A. Masters, J. Phys. Chem. 88, 861 (1984).Google Scholar
  231. 149.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).ADSGoogle Scholar
  232. 150.
    B. Barboy and W. M. Gelbart, J. Stat. Phys. 22, 709 (1979)MathSciNetADSGoogle Scholar
  233. B. Barboy and W. M. Gelbart J. Chem. Phys. 71, 3053 (1979).ADSGoogle Scholar
  234. 151.
    W. M. Gelbart, W. E. McMullen and A. Ben-Shaul, J. de Physique 46, 1137 (1985).Google Scholar
  235. 152.
    W. M. McMullen, W. M. Gelbart and A. Ben-Shaul, J. Chem. Phys. 82, 5616 (1985).ADSGoogle Scholar
  236. 153.
    G. Lasher, J. Chem. Phys. 53, 4141 (1970).ADSGoogle Scholar
  237. 154.
    W. M. McMullen, W. M. Gelbart and Y. Rosenfeld, J. Chem. Phys. 85, 1088 (1986).ADSGoogle Scholar
  238. 155.
    T. Odijk, J. de Physique 48, 125 (1987).Google Scholar
  239. 156.
    J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, New York, 1976).Google Scholar
  240. 157.
    S. Q. Wang, W. M. Gelbart and A. Ben-Shaul, J. Phys. Chem. 94, 2219 (1990).Google Scholar
  241. 158.
    S. Q. Wang, J. Phys. Chem. 94, 8381 (1990)Google Scholar
  242. S. Q. Wang Macromolecules 25, 1153 (1992)ADSGoogle Scholar
  243. R. Bruinsma, W. M. Gelbart and A. Ben-Shaul, J. Chem. Phys. 96, 7710 (1992).ADSGoogle Scholar
  244. 159.
    M. E. Cates and M. S. Turner, Europhys. Lett. 11, 681 (1990).ADSGoogle Scholar
  245. 160.
    M. P. Taylor and J. Herzfeld, Langmuir 6, 911 (1990)Google Scholar
  246. M. P. Taylor and J. Herzfeld Phys. Rev. A 43, 1892 (1991).Google Scholar
  247. 161.
    D. J. Mitchell, G. J. T. Tiddy, L. Waring, T. Bostock and M. P. McDonald, J. Chem. Soc. Faraday Trans. 2 79, 975 (1983).Google Scholar
  248. 162.
    Y. Song, R. M. Stratt and E. A. Mason, J. Chem. Phys. 88, 1126 (1988).ADSGoogle Scholar
  249. 163.
    A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A 36, 2929 (1987)ADSGoogle Scholar
  250. A. Stroobants Phys. Rev. Lett. 57, 1452 (1986).ADSGoogle Scholar
  251. 164.
    See: M. P. Taylor, R. Hentschke and J. Herzfeld, Phys. Rev. Lett. 62, 800 (1989)ADSGoogle Scholar
  252. A. M. Somoza and P. Tarazona, ibid. 61, 2566 (1988)ADSGoogle Scholar
  253. A. Paniewierski and R. Holyst, ibid. 61, 2461 (1988); and references contained therein.ADSGoogle Scholar
  254. 165.
    N. Boden, R. J. Bushby, C. Hardy and F. Sixl, Chem. Phys. Lett. 123, 359 (1986).ADSGoogle Scholar
  255. 166.
    M. E. Cates, D. Roux, D. Andelman, S. T. Milner and S. A. Safran, Europhys. Lett. 5 733 (1988).ADSGoogle Scholar
  256. 167.
    See, for example, H Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).Google Scholar
  257. 168.
    C. K. Bagdassarian, D. Roux, A. Ben-Shaul and W. M. Gelbart, J. Chem. Phys. 94 3030 (1991)ADSGoogle Scholar
  258. C. Bagdassarian, PhD. Thesis, University of California, Los Angeles (1991).Google Scholar
  259. 169.
    Y. Hendrikx, J. Charvolin, P. Kekicheff and M. Roth, Liq. Cryst. 2 677 (1987).Google Scholar
  260. 170.
    Y. Hendrikx, J. Charvolin and M. Rawise, J. Colloid Interface Sci. 100 597 (1987).Google Scholar
  261. 171.
    Y. Hendrikx and J. Charvolin, J. de Physique 42 1427 (1981).Google Scholar
  262. 172.
    P. Ekwall, in Advanced Liquid Crystals, G. H. Braun, ed. (Academic Press, New York, 1975), Vol. 1.Google Scholar
  263. 173.
    T. R. Carale and D. Blankschtein, J. Phys. Chem. 96 459 (1992).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Avinoam Ben-Shaul
    • 1
  • William M. Gelbart
    • 2
  1. 1.Department of Physical Chemistry and The Fritz Haber Research Center for Molecular DynamicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of Chemistry and BiochemistryThe University of CaliforniaLos AngelesUSA

Personalised recommendations