Delineation of Subunit and Receptor Contact Sites by Site-Directed Mutagenesis of hCGβ

  • David Puett
  • Jianing Huang
  • Haiying Xia
Conference paper
Part of the Serono Symposia USA book series (SERONOSYMP)

Abstract

Considerable data have been amassed on the four glycoprotein hormones, chorionic gonadotropin (CG), luteinizing hormone (LH), follicle stimulating hormone (FSH), and thyroid stimulating hormone (TSH) (1). It is well established that, within a species, the single α-subunit binds to distinct β-subunits to form bioactive holoproteins, which exhibit specificity for three G protein-coupled receptors (r) (2), LH/CGr (3), FSHr (4), and TSHr (5). Since the glycoprotein hormones contain a common α-subunit, and since both subunits are believed to participate in receptor binding (6, 7), interesting questions and models can be developed regarding subunit contact sites and hormone receptor contact sites, particularly those responsible for conferring specificity. The absence of a crystallographic structure for any member of the glycoprotein hormone family has, however, prevented a detailed understanding of these contact regions.

Keywords

Hydroxyl Carbohydrate Codon Tyrosine Carboxyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan RJ, Charlesworth MC, McCormick DJ, Milius RP, Keutmann HT. The glycoprotein hormones: recent studies of structure-function relationships. FASEB J 1988; 2: 2661–9.PubMedGoogle Scholar
  2. 2.
    Merz WE. Properties of glycoprotein hormone receptors and post-receptor mechanisms. Exp Clin Endocrinol 1992; 100: 4–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ascoli M, Segaloff DL. On the structure of the luteinizing hormone/chorionic gonadotropin receptor. Endocr Rev 1989; 10: 27–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Sprengel R, Braun T, Nikolics K, Segaloff DL, Seeburg PH. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol 1990; 4: 525–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992; 13: 596–611.PubMedGoogle Scholar
  6. 6.
    Keutmann HT. Receptor-binding regions in human glycoprotein hormones. Mol Cell Endocrinol 1992; 86: C1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Dias J. Progress and approaches in mapping the surfaces of human follicle-stimulating hormone: comparison with other human pituitary glycoprotein hormones. Trends Endocrinol Metab 1992; 3: 24–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Annu Rev Biochem 1981; 50: 465–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Gordon WL, Ward DN. Structural aspects of luteinizing hormone actions. In: Ascoli M, ed. Luteinizing hormone action and receptors. Boca Raton, FL: CRC Press, 1985: 173–97.Google Scholar
  10. 10.
    Keutmann HT, Charlesworth MC, Mason KA, Ostrea T, Johnson L, Ryan RJ. A receptor-binding region in human choriogonadotropin/lutropin β subunit. Proc Natl Acad Sci USA 1987; 84: 2038–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Keutmann HT, Mason KA, Kitzmann K, Ryan RJ. Role of the β93–100 determinant loop sequence in receptor binding and biological activity of human luteinizing hormone and chorionic gonadotropin. Mol Endocrinol 1989: 526–31.Google Scholar
  12. 12.
    Salesse R, Bidart JM, Troalen F, Bellet D, Gamier J. Peptide mapping of intersubunit and receptor interactions of human choriogonadotropin. Mol Cell Endocrinol 1990; 68: 113–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Santa-Coloma TA, Reichert LE Jr. Identification of a follicle-stimulating hormone receptor-binding region in hFSH-β-(81–95) using synthetic peptides. J Biol Chem 1990; 265: 5037–42.PubMedGoogle Scholar
  14. 14.
    Santa-Coloma TA, Dattatreyamurty B, Reichert LE Jr. A synthetic peptide corresponding to human FSH β-subunit 33–53 binds to FSH receptor, stimulates basal estradiol biosynthesis, and is a partial antagonist of FSH. Biochemistry 1990; 29: 1194–200.PubMedCrossRefGoogle Scholar
  15. 15.
    Santa-Coloma TA, Reichert LE Jr. Determination of α-subunit contact regions of human follicle-stimulating hormone β-subunit using synthetic peptides. J Biol Chem 1991; 266: 2759–62.PubMedGoogle Scholar
  16. 16.
    Birken S, Kolks MAG, Amr S, Nisula B, Puett D. Structural and functional studies of the tryptic core of the human chorionic gonadotropin β-subunit. Endocrinology 1987; 121: 657–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Bousfield GR, Ward DN. Selective proteolysis of ovine lutropin or its β subunit by endoproteinase arg-C. J Biol Chem 1988; 263: 12602–7.PubMedGoogle Scholar
  18. 18.
    Hayashizaki Y, Hiraoka Y, Endo Y, Miyai K, Matsubara K. Thyroid-stimulating hormone (TSH) deficiency caused by a single base substitution in the CAGYC region of the β-subunit. EMBO J 1989; 8: 2291–6.PubMedGoogle Scholar
  19. 19.
    Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitutuion in the β subunit of luteinizing hormone. N Engl J Med 1992; 326: 179–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 1985; 82: 488–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Deng WP, Nickoloff JA. Site-directed mutagensis of virtually any plasmid by eliminating a unique site. Anal Biochem 1992; 200: 81–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Jones DH, Howard BH. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. BioTechniques 1990; 8: 178–83.PubMedCrossRefGoogle Scholar
  23. 23.
    El-Deiry S, Kaetzel D, Kennedy G, Nilson J, Puett D. Site-directed muta-genesis of the human chorionic gonadotropin β-subunit: bioactivity of a heterologous hormone, bovine α-human des-(122–145) β. Mol Endocrinol 1989; 3: 1523–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Chaney WG, Howard DR, Pollard JW, Sallustio S, Stanley P. High-frequency transfection of CHO cells using polybrene. Somatic Cell Mol Genet 1986; 3: 237–44.CrossRefGoogle Scholar
  25. 25.
    Kaetzel DM, Browne JK, Wondisford F, Nett TM, Thomason AR, Nilson JH. Expression of biologically active bovine luteinizing hormone in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1985; 82: 7280–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen F, Puett D. Delineation via site-directed mutagenesis of the carboxyl-terminal region of human choriogonadotropin β required for subunit assembly and biological activity. J Biol Chem 1991; 266: 6904–8.PubMedGoogle Scholar
  27. 27.
    Xia H, Huang J, Chen T-M, Puett D. Lysines 2 and 104 of the human chorionic gonadotrophin β subunit influence receptor binding. J Mol Endocrinol 1993.Google Scholar
  28. 28.
    El-Deiry S, Chen T-M, Puett D. Comparison of steroidogenic potencies of homologous and heterologous gonadotropins in rat and mouse Leydig cells. Mol Cell Endocrinol 1991; 76: 105–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Matzuk MM, Hsueh JW, Lapolt P, Tsafriri A, Keene JL, Boime I. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin β-subunit. Endocrinology 1990; 126: 376–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen W, Bahl OP. Recombinant carbohydrate variant of human choriogonadotropin β-subunit (Hcgβ) descarboxyl terminus (115–145). J Biol Chem 1991; 266: 6246–51.PubMedGoogle Scholar
  31. 31.
    Huang J, Chen F, Puett D Amino/carboxyl-terminal deletion mutants of choriogonadotropin β. J Biol Chem 1993.Google Scholar
  32. 32.
    Moore WT Jr, Burleigh BD, Ward DN. Chorionic gonadotropins: comparative studies and comments on relationships to other glycoprotein hormones. In: Segal SJ, ed. Chorionic gonadotropin. New York: Plenum Press, 1980: 89–126.Google Scholar
  33. 33.
    Ward DN, Bousfield GR, Moore KH. Gonadotropins. In: Cupps PT, ed. Reproduction in domestic animals. 4th ed. New York: Academic Press, 1991: 25–80.Google Scholar
  34. 34.
    Suganuma N, Matzuk MM, Boime I. Elimination of disulfide bonds affects assembly and secretion of the human chorionic gonadotropin β subunit. J Biol Chem 1989; 264: 19302–7.PubMedGoogle Scholar
  35. 35.
    Azuma C, Miyai K, Saji F, et al. Site-specific mutagenesis of human chorionic gonadotropin (hCG)-β subunit: influence of mutation on hCG production. J Mol Endocrinol 1990; 5: 97–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Xia H, Fernandez LM, Puett D. Replacement of the invariant tyrosine in the CAGY region of the human chorionic gonadotropin β subunit. Mol Cell Endocrinol 1993; 92: R1–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen F, Wang Y, Puett D. Role of the invariant aspartic acid 99 of human choriogonadotropin β in receptor binding and biological activity. J Biol Chem 1991; 266: 19357–61.PubMedGoogle Scholar
  38. 38.
    Chen F, Puett D. A single amino acid residue replacement in the β subunit of human chorionic gonadotrophin results in the loss of biological activity. J Mol Endocrinol 1992; 8: 87–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Mise T, Bahl OP. Assignment of disulfide bonds in the β subunit of human chorionic gonadotrophin. J Biol Chem 1981; 256: 6587–92.PubMedGoogle Scholar
  40. 40.
    Huth JR, Mountjoy K, Perini F, Ruddon RW. Intracellular folding pathway of human chorionic gonadotropin β subunit. J Biol Chem 1992; 267: 8870–9.PubMedGoogle Scholar
  41. 41.
    Campbell RK, Dean-Emig DM, Moyle WR. Conversion of human choriogonadotropin into a follitropin by protein engineering. Proc Nat ’ Acad Sci USA 1991; 88: 760–4.CrossRefGoogle Scholar
  42. 42.
    Chen F, Puett D. Contributions of arginines-43 and -94 of human choriogonadotropin β to receptor binding and activation as determined by oligonucleotide-based mutagenesis. Biochemistry 1991; 30: 10171–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang J, Ujihara M, Xia H, Chen F, Yoshida H, Puett D. Mutagenesis of the “determinant loop” region of human choriogonadotropin β. Mol Cell Endocrinol 1993; 90: 211–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • David Puett
  • Jianing Huang
  • Haiying Xia

There are no affiliations available

Personalised recommendations