Skip to main content

Confocal Microscopy: Basic Principles and System Performance

  • Chapter
Multidimensional Microscopy

Abstract

Confocal microscopy is particularly advantageous for 3-D imaging of thick objects as a result of its optical sectioning property (Sheppard, 1987). It is widely used in the fluorescence mode for imaging biological objects of various types, but is also used in the brightfield reflection mode for imaging objects of different forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariyama, I., Taraka, T., Oda, E., Kamata, T., Masubuchi, K., Arai, K. and Ishihara, Y. (1986): A 1280 x 980 pixel CCD image sensor, in: Digest of technical papers, 1986 IEEE Int. Solid State Circuit Conf., 96–97.

    Google Scholar 

  • Blouke, M., Corrie, B., Heidtmann, D., Yang, F. H., Winzenread, M., Lust, M. L., March, H. H. and Taresick, J. R. (1987): Large format, high resolution image sensors, Opt. Eng., 26: 837–843.

    CAS  Google Scholar 

  • Cox, I. J. and Sheppard, C. J. R. (1986): The information capacity of a multidimensional communication system, Int. J. Electronics, 60: 655–662.

    Article  Google Scholar 

  • Davidovitz, P. and Egger, M. D. (1971): Scanning laser microscope for biological investi-gations. Appl. Opt., 10: 1615–1619.

    Article  Google Scholar 

  • Frieden, B. R. (1967): Optical transfer of the three-dimensional object, J. Opt. Soc. Amer., 57: 56–66.

    Article  Google Scholar 

  • Gu, M. and Sheppard, C. J. R. (1991): Effects of a finite-sized detector on the OTF of confocal fluorescent microscopy, Optik, 89: 65–69.

    CAS  Google Scholar 

  • Gu, M. and Sheppard, C. J. R. (1992): Confocal fluorescent microscopy with a finite sized circular detector, J. Opt. Soc. Amer., A 9: 151–153.

    Article  Google Scholar 

  • Howarth, J., Holtom, R., Sheppard, C. J. R. and Trawny, E. (1976): Thermionic emission from NEA silicon, Adv. Electronics and Electron Physics, 40A: 387–396.

    Article  Google Scholar 

  • Kawata, S., Arimoto, R. and Nakamura, O. (1991): Three-dimensional optical-transfer function analysis for a laser-scan fluorescence microscope with an extended detector, J. Opt. Soc. Amer., A 8: 171–175.

    Article  Google Scholar 

  • Kimura, S. and Munakata, C. (1989): Calculation of three-dimensional optical transfer function for a confocal scanning fluorescent microscope, J. Opt. Soc. Amer., A 6: 1015–1019.

    Article  Google Scholar 

  • Kimura, S. and Munakata, C. (1990): Dependence of 3-D optical transfer functions on the pinhole radius in a fluorescent confocal optical microscope, Applied Optics, 29: 3007–3011.

    Article  PubMed  CAS  Google Scholar 

  • Koester, C. J., Khanna, S. M., Rosskothen, H. and Tackaberry, R. B. (1989): Incident light sectioning microscope for visualization of cellular structures in the inner ear, Acta Otolaryngol (Stockh) Suppl., 467: 27–33.

    Article  CAS  Google Scholar 

  • Martinelli, R. U. and Fisher, D. G. (1974): The application of semiconductors with negative electron affinity surface to election emission devices, Proc. IEEE, 62: 11339.

    Article  Google Scholar 

  • McCutchen, C. W. (1964): Generalized aperture and the three-dimensional diffraction image, J. Opt. Soc. Amer., 54: 240–244.

    Article  Google Scholar 

  • Nakamura, O. and Kawata, S. (1990): Three-dimensional transfer function analysis of the tomographic capability of a confocal fluorescent microscopy, J. Opt. Soc. Amer., A7: 522–526.

    Article  Google Scholar 

  • Noda, M., Imaide, T., Kinugasa and Nishmura, R. (1986): A solid state color video camera with a horizontal readout MOS imager, IEEE Trans. Consumer Electron., CE-32: 329–336.

    Article  Google Scholar 

  • Shannon, C. E. (1949): Communications in the presence of noise, Proc. IRE, 37: 10–21.

    Article  Google Scholar 

  • Sheppard, C. J. R. (1986a): The spatial frequency cut-off in three-dimensional imaging, Optik, 72: 131–133.

    CAS  Google Scholar 

  • Sheppard, C. J. R. (1986b): The spatial frequency cut-off in three-dimensional imaging II, Optik, 74: 128–129.

    Google Scholar 

  • Sheppard, C. J. R. (1987): Scanning optical microscopy, In: Advances in Optical and Electron Microscopy, Vol. 10, R Barer and VE Cosslett eds., Academic Press, London, 1–98.

    Google Scholar 

  • Sheppard, C. J. R. and Mao, X. Q. (1988): Confocal microscopy with slit apertures. J. Mod. Opt., 35: 1169–1185.

    Article  Google Scholar 

  • Sheppard, C. J. R. (1989a): General considerations of diffraction theory of 3-D imaging, European J. Cell Biology, 48, Suppl. 25: 29–32.

    Google Scholar 

  • Sheppard, C. J. R. (1989b): Axial resolution of confocal fluorescence microscopy, J. Microscopy 154: 237–241.

    Article  Google Scholar 

  • Sheppard, C. J. R. and Mao, X. Q. (1989): Three-dimensional imaging in a microscope, J. Opt. Soc. Amer., A6: 1260–1269.

    Article  Google Scholar 

  • Sheppard, C. J. R. (1991): Straylight and noise in confocal microscopy, Micron Microsc. Acta, 22: 239–243.

    Article  Google Scholar 

  • Sheppard, C. J. R. and Cogswell, C. J. (1990): Three-dimensional imaging in confocal microscopy, J. Microscopy 159: 179–194.

    Article  Google Scholar 

  • Sheppard, C. J. R. and Gu, M. (1991a): Optical sectioning in confocal microscopes with annular pupil, Optik, 86: 169–172.

    Google Scholar 

  • Sheppard, C. J. R. and Gu, M. (1991b): Improvement of axial resolution in confocal microscopy using an annular pupil, Opt. Commun., 84: 7–13.

    Article  Google Scholar 

  • Sheppard, C. J. R., Cogswell, C. J. and Gu, M. (1991): Signal strength and noise in confocal microscopy: factors influencing selection of an optimum detector aperture, Scanning, 13: 233–240.

    Article  Google Scholar 

  • Sheppard, C. J. R. and Gu, M. (1992): The significance of 3-D transfer function in confocal scanning microscopy, J. Microsc., 165: 377–399.

    Article  Google Scholar 

  • Sheppard, C. J. R., Gu, M. and Roy, M. (1992): Signal-to-noise ratio in confocal microscope system, J. Microsc., 168: 209–218.

    Article  Google Scholar 

  • Streibl, N. (1985): Three-dimensional image in a microscope, J. Opt. Soc. Am. A2: 121–127.

    Article  Google Scholar 

  • Wolf, E. (1969): Three-dimensional structure determination of semi-transparent objects from holographic data, Opt. Commun., 1: 153–156.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sheppard, C.J.R. (1994). Confocal Microscopy: Basic Principles and System Performance. In: Cheng, P.C., Lin, T.H., Wu, W.L., Wu, J.L. (eds) Multidimensional Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8366-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8366-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8368-0

  • Online ISBN: 978-1-4613-8366-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics