Stereochemical Principles

  • Atta-ur-Rahman
  • Zahir Shah


Compounds having the same molecular formula may differ from one another in the nature or sequence in which the individual atoms are bound. Such compounds are known as isomers and they may differ significantly in their chemical and physical properties, depending on the structures. For instance ethylene oxide and acetaldehyde both have the formula C2H4O but they differ in their constitution. When substances have the same constitution but differ from one another in the manner in which the individual atoms (or groups) are arranged in space, then they are termed stereoisomers. When two stereoisomers are so related to each other that one is the nonsuperimposable mirror image of the other, then the two are said to be enantiomeric and each enantiomer is chiral. They differ from one another in having an equal and opposite optical rotation. Stereoisomers which are not enantiomers are called diastereomers. Diastereomers may therefore be defined as substances which have the same constitution, which are not mirror images and which differ from one another in having a different configuration at one or more asymmetric centers in the molecule [1–3]. Substances may also exist as conformers; the conformational isomerism results from the existence of discrete isomers due to barriers in the rotation about single bonds.


Sequence Rule Asymmetric Center Attached Atom Chiral Reagent Stereoselective Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nomenclature of “Organic Chemistry”, Part E. Pure Appl. Chem., 45, 11 (1976).Google Scholar
  2. 2.
    K. Mislow, M. Raban, Top. Stereochem., 1 (1967).Google Scholar
  3. 3.
    J.K. O’loane, Chem. Rev., 80, 41 (1980).CrossRefGoogle Scholar
  4. 4.
    R.S. Cahn, C.K. Ingold, V. Prelog, Angew. Chemie., 5, 385 (1966).CrossRefGoogle Scholar
  5. 5.
    P.A. Brown, M.M. Harris, R.Z. Mazengo, S. Singh, J.ChemSoc.C., 3990 (1971).Google Scholar
  6. 6.
    W.L. Waters, W.S. Linn, M.E. Caserio, J. Amer. Chem. Soc., 90, 6741 (1968).CrossRefGoogle Scholar
  7. 7.
    A.C. Cope, A.S. Mehta, J. Amer. Chem. Soc., 96, 3906 (1974).CrossRefGoogle Scholar
  8. 8.
    S.G. Know, Top. Stereochem., 5, 31 (1969).Google Scholar
  9. 9.
    S.H. Wilen, Top. Stereochem., 6, 107 (1971).CrossRefGoogle Scholar
  10. 10.
    S.H. Wilen, A. Collet, J. Jacques, Tetrahedron, 33, 2725 (1977).CrossRefGoogle Scholar
  11. 11.
    J.A. Dale, D.L. Dull, U.S. Mosher, J. Org. Chem., 34, 2543 (1969).CrossRefGoogle Scholar
  12. 12.
    C.H. Heathcock, C.T. Buse, W.A. Kelschick, M.C. Pissuing, J.E. Sohn, J. Lampe, J. Org. Chem., 45, 1066 (1980).CrossRefGoogle Scholar
  13. 13.
    S. Masamune, S.A. Ali, D.L. Snitman, D.S. Garrey, Angew. Chem., 19, 557 (1980).CrossRefGoogle Scholar
  14. 14.
    FA. Carey, MA. Kuehne, J. Org. Chem., 17, 3811 (1982).CrossRefGoogle Scholar
  15. 15.
    R. Noyori, I. Nishida, J. Sakata, J. Amer. Chem. Soc., 103, 2108 (1981).CrossRefGoogle Scholar
  16. 16.
    D. Seebach, V. Prelog, Angew. Chem., 21, 654 (1982).Google Scholar
  17. 17.
    J.L. Luche, L. Rodriguez-Hahn, P. Crabbe, J. Chem. Soc. Chem. Commun., 601 (1978).Google Scholar
  18. 18.
    K.B. Sharpless, R.C. Michaelson, J. Amer. Chem. Soc., 95, 6136 (1973).CrossRefGoogle Scholar
  19. 19.
    K.B. Sharpless, T.R. Verhoeven, Aldrichimica Acta, 12, 63 (1979).Google Scholar
  20. 20.
    B.M. Trost, L. Weber, P.E. Strege, T.J. Fullerton, T.J. Dietsche, J. Amer. Chem. Soc., 100, 3426 (1978).CrossRefGoogle Scholar
  21. 21.
    C.G. Screttas, M. Micha-Screttas, J. Org. Chem., 43, 1064 (1978).CrossRefGoogle Scholar
  22. 22.
    C.G. Screttas, M. Micha-Screttas, J. Org. Chem., 44, 713 (1979).CrossRefGoogle Scholar
  23. a).
    a) S.R. Wilson, M. S. Hague and R.N. Misra, J.Org.Chem., 47, 747 (1982)CrossRefGoogle Scholar
  24. (b).
    b) I. Fleming, Chem. Soc. Rev., 10, 83 (1981).CrossRefGoogle Scholar
  25. 24.
    W.C. Still, J.A. McDonald, Tetrahedron Lett., 1031, 1035 (1980).CrossRefGoogle Scholar
  26. 25. a)
    a) B.M. Trost, T.P. Khun, J. Amer Chem. Soc., 101, 6756 (1979).CrossRefGoogle Scholar
  27. (b).
    B.M. Trost, T.P. Khun, J. Amer. Chem. Soc., 103, 1864 (1981).CrossRefGoogle Scholar
  28. 26.
    N. Cohen, R.J. Lopresti, C. Neukom, G. Saucy, J. Org. Chem., 45, 582 (1980).CrossRefGoogle Scholar
  29. 27.
    P.A. Bartlett, K.K. Jernstedt, Tetrahedron Lett., 1607 (1980).Google Scholar
  30. 28.
    For a latest review on enantioselective synthesis, see: Chem.Rev., 92 (5), 739 (1992).Google Scholar
  31. 29.
    B.M. Trost, D.O. Krongly, J.L. Belletire, J. Amer. Chem. Soc., 102, 7595 (1980).CrossRefGoogle Scholar
  32. 30.
    M.M. Midland, A. Kazubski, J. Org. Chem., 47, 2814 (1982).CrossRefGoogle Scholar
  33. 31.
    I. Chibata in: “Asymmetric Reactions and Processes in Chemistry”, (E.L. Eliel, S. Otsuka, eds.), Amer. Chem. Soc., Washington, D.C., (1982).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Atta-ur-Rahman
    • 1
  • Zahir Shah
    • 1
  1. 1.H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations