Advertisement

Modelling of Homogeneous Sinters and Some Generalizations of Plateau’s Problem

  • J. Christian Schön
  • Peter Salamon
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 51)

Abstract

We present three generalizations of Plateau’s problem that arise naturally in the description of homogeneous sinters.

Keywords

Positive Real Number Sinter Process Equilibrium Configuration Surface Tension Force Solid Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M. German, Liquid Phase Sintering, (Plenum Press, New York, 1985).Google Scholar
  2. [2]
    H.E. Exnbr and E. Arzt, in Physical Metallurgy: third revised and enlarged edition, edited by R.W. Cahn and P. Haasen (Elsevier Science Publishers BV, 1983).Google Scholar
  3. [3]
    F. Amar, J. Bernholc, R.S. Berry, J. Jellinek and P. Salamon, J. Appl. Phys., 65 (1989), 3219–3225.ADSCrossRefGoogle Scholar
  4. [4]
    P. Basa, J.C. Schön, R.S. Berry, J. Bernholc, J. Jellinek and P. Salamon, Phys. Rev. B, 43 (1991), 8113ff.ADSCrossRefGoogle Scholar
  5. [5]
    L.D. Landau and E.M. Lifshitz, Statistical Physics 3rd ed. Part 1, (Pergamon Press, New York, 1985), 517ff.Google Scholar
  6. [6]
    P.G. DeGennes, Rev. Mod. Phys., 57 (1985), 827–863.ADSCrossRefGoogle Scholar
  7. [7]
    P. Salamon, J. Bernholc, R.S. Berry, M.E. Carrera-Patino and B. Andersen, J. Math. Phys., 31 (1990), 610–615.MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    E. Giusti, Minimal Surfaces and Functions of Bounded Variation, (Birkhäuser, Boston, 1984).MATHGoogle Scholar
  9. [9]
    F. Morgan, Geometric Measure Theory: A Beginner’s Guide, (Academic Press Inc. Harcourt Brace Jovanovich, Boston, 1988).MATHGoogle Scholar
  10. [10]
    H. Federer, Geometric Measure Theory, (Springer-Verlag, New York, 1969).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • J. Christian Schön
    • 1
  • Peter Salamon
    • 1
  1. 1.Department of Mathematical SciencesSan Diego State UniversitySan DiegoUSA

Personalised recommendations