Skip to main content

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Cells maintain, by active transport, a high intracellular K+ and low intracellular Na+ relative to the extracellular compartment. Hodgkin and Keynes (1955) showed that active transport of Na+ and K+ required cellular metabolism, and subsequently that it was dependent on the supply of “high-energy” phosphorylated compounds (Caldwell et al. 1960). Skou (1957) was the first to demonstrate that active transport might have an enzymatic basis. From crab nerve he isolated membrane fragments that possessed a Mg2+-dependent adenosine triphosphatase (ATPase) enzyme activity that was stimulated by the simultaneous presence of Na+ and K+. It was significant that Skou found that the monovalent cation-stimulated activity was abolished by ouabain, an inhibitor of active Na+ transport (Schatzmann 1953). The enzyme was described as the Na+,K+-dependent ATPase (E.C.3.6.1.3.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Hakima RE, Davey KG (1979) A possible relationship between ouabainsensitive (Na+-K+) dependent ATPase and the effect of juvenile hormone on the follicle cells of Rhodnius prolixus. Insect Biochem 9:195–198

    Article  CAS  Google Scholar 

  • Ahmed K, Judah JD (1965) On the action of strophanthin G. Can J Biochem 43:877–880

    Article  PubMed  CAS  Google Scholar 

  • Akera T (1971) Quantitative aspects of the interaction between ouabain and (Na+-K+) activated ATPase in vitro. Biochim Biophys Acta 249:53–62

    Article  PubMed  CAS  Google Scholar 

  • Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756

    Article  PubMed  CAS  Google Scholar 

  • Albers RW, Koval G, Siegal GJ (1968) Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase. Mol Pharmacol 4:324–336

    PubMed  CAS  Google Scholar 

  • Allen JC, Lindenmeyer GE, Schwartz A (1970) An allosteric explanation for ouabain-induced time-dependent inhibition of sodium, potassium-adenosine triphosphatase. Arch Biochem Biophys 141:322–328

    Article  PubMed  CAS  Google Scholar 

  • Anstee JH, Bell DM (1975) Relationship of Na+-K+-activated ATPase to fluid production by Malpighian tubules of Locusta migratoria. J Insect Physiol 21:177–184

    Google Scholar 

  • Anstee JH, Bell DM (1978) Properties of Na+-K+-activated ATPase from excretory system of Locusta. Insect Biochem 8:3–9

    Article  CAS  Google Scholar 

  • Anstee JH, Bowler K (1979) Ouabain-sensitivity of insect epithelial tissues. A review. Comp Biochem Physiol A 62:763–769

    Article  Google Scholar 

  • Atkinson A, Gatenby AD, Lowe AG (1973) The determination of inorganic orthophosphate in biological systems. Biochim Biophys Acta 320:195–204.

    PubMed  CAS  Google Scholar 

  • Bonting SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar EE (ed) Membranes and ion transport, Vol 1, pp 257–363. Wiley, New York

    Google Scholar 

  • Bonting SL, Hawkins NM, Canady MR (1964) Studies of sodium-potassium activated adenosine triphosphatase. Biochem Pharmacol 13:13–22

    Article  PubMed  CAS  Google Scholar 

  • Caldwell PC, Hodgkin AL, Keynes RD, Shaw TI (1960) Partial inhibition of the active transport of cations in the giant axons of Loligo. J Physiol (Lond) 152:591–600

    CAS  Google Scholar 

  • Cantley LC, Josephson L, Warner R, Yamagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na-K) ATPase inhibitor in ATP derived from muscle. J Biol Chem 252:7421–7423

    PubMed  CAS  Google Scholar 

  • Cantley LC, Cantley LG, Josephson L (1978) A characterization of vanadate interactions with the (Na, K) ATPase. Mechanistic and regulatory implications. J Biol Chem 253:7361–7368

    PubMed  CAS  Google Scholar 

  • Charnock JS, Simonson LP, Almeida AF (1977) Variation in sensitivity of cardiac glycoside receptor characteristics of (Na+-K+) ATPase to lipolysis and temperature. Biochim Biophys Acta 465:77–92

    Article  PubMed  CAS  Google Scholar 

  • Cheng EY, Cutcomp LK (1975) The ATPase system in American cockroach muscle and nerve cord. Insect Biochem 5:421–427

    Article  CAS  Google Scholar 

  • Dibona DR, Mills JW (1979) Distribution of Na+-pump sites in transporting epithelia. Fed Proc 38:134–143

    PubMed  CAS  Google Scholar 

  • Donkin JE (1981) Some effects of insect hormones on Na+, K+-ATPase and fluid secretion by the Malpighian tubules of Locusta migratoria L. Doctoral dissertation, University of Durham, Durham UK

    Google Scholar 

  • Donkin JE, Anstee JH (1980) The effect of temperature on the ouabain-sensitivity of Na+-K+-activated ATPase and fluid secretion by the Malpighian tubules of Locusta. Experientia 36:986–987

    Article  CAS  Google Scholar 

  • Erdmann E, Hasse W (1975) Quantitative aspects of ouabain binding to human erythrocyte and cardiac membranes. J Physiol (Lond) 251:671–682.

    CAS  Google Scholar 

  • Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na+-K+) ATPase preparations from different tissues and species. Biochim Biophys Acta 307:386–398

    Article  PubMed  CAS  Google Scholar 

  • Ernst SA (1972a) Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem 20:23–38

    Article  CAS  Google Scholar 

  • Ernst SA (1972b) Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem 20:13–22

    Article  CAS  Google Scholar 

  • Ernst SA (1975) Transport ATPase cytochemistry: Ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex. J Cell Biol 66:586–608

    Article  PubMed  CAS  Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabainsensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75:74–94

    Article  PubMed  CAS  Google Scholar 

  • Ernst SA, Mills JW (1980) Autoradiographic localization of tritiated ouabainsensitive sodium pump sites in ion transporting epithelia. J. Histochem Cytochem 28:72–77

    Article  PubMed  CAS  Google Scholar 

  • Ernst SA, Philpott CW (1970) Preservation of Na-K-activated and Mg-activated adenosine triphosphatase activities of avian salt gland and teleost gill with formaldehyde as fixative. J Histochem Cytochem 18:251–263

    Article  PubMed  CAS  Google Scholar 

  • Ernst SA, Riddle CV, Karnaky KJ (1980) Relationship between localization of Na+-K+-ATPase, cellular fine structure, and reabsorptive and secretory electrolyte transport. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, Vol 13, pp 355–385. Academic Press, New York

    Google Scholar 

  • Firth JA (1980) Reliability and specificity of membrane adenosine triphosphatase localizations. J Histochem Cytochem 28:67–71

    Article  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimeter determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Fristrom JW, Kelly L (1976) Effects of ß-ecdysone and juvenile hormone on the Na+/K+-dependent ATPase in imaginal disks of Drosophila melanogaster. J Insect Physiol 22:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Garay RP, Garrahan PJ (1973) The interaction of sodium and potassium with the sodium pump of red cells. J Physiol (Lond) 231:297–325

    CAS  Google Scholar 

  • Garrahan PJ, Rega AF (1972) Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on cation fluxes. J Physiol (Lond) 223:595–617

    CAS  Google Scholar 

  • Gilbert JC, Wyllie MG (1975) Effects of prostaglandins on the ATPases of synaptosomes. Biochem Pharmacol 24:551–556

    Article  PubMed  CAS  Google Scholar 

  • Glynn IM (1968) Membrane adenosine triphosphatase and cation transport. Br Med Bull 24:165–169

    PubMed  CAS  Google Scholar 

  • Glynn IM, Karlish SJD (1975) The sodium pump. Annu. Rev. Physiol 37:13–55

    Article  CAS  Google Scholar 

  • Godfraind T, De Pover A, Dutete DT (1980) Identification with potassium and vanadate of two classes of specific ouabain binding sites in a (Na+-K+)ATPase preparation from the guinea-pig heart. Biochem Pharmacol 29:1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Grasso A (1967) A sodium and potassium stimulated adenosine triphosphatase in the cockroach nerve cord. Life Sci 6:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Albers RW (1974) Histochemical demonstration of (Na+-K+)-activated adenosine triphosphatase. J Histochem Cytochem 22:320–326

    Article  PubMed  CAS  Google Scholar 

  • Hansen O (1971) The relationship between g-strophanthin-binding capacity and ATPase activity in plasma membrane fragments from ox brain. Biochim Biophys Acta 233:122–132

    Article  CAS  Google Scholar 

  • Harms V, Wright EM (1980) Some characteristics of Na/K-ATPase from rat intestinal basal lateral membranes. J Membr Biol 53:119–128

    Article  PubMed  CAS  Google Scholar 

  • Heller M, Beck S (1978) Interactions of cardiac glycosides with cells and membranes-Properties and structural aspects of two receptor sites for ouabain in erythrocytes. Biochim Biophys Acta 514:332–347

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) Active transport of cations in giant axons from Sepia and Loligo. J Physiol (Lond) 128:28–60

    CAS  Google Scholar 

  • Ilenchuk TT, Davey KG (1982) Some properties of Na+-K+ ATPase in the follicle cells of Rhodnius prolixus. Insect Biochem 12:675–679

    Article  CAS  Google Scholar 

  • Izutsu KT, Siegel IA, Brisson DL (1974) The effect of ionic strength on a Mgt+ ATPase and its relevance to the determination of (Na+-K+) ATPase. Biochim Biophys Acta 373:361–368

    Article  PubMed  CAS  Google Scholar 

  • Jenner DW, Donnellan JF (1976) Properties of the housefly head sodium and potassium-dependent adenosine triphosphatase. Insect Biochem 6:561–566

    Article  CAS  Google Scholar 

  • Joiner CH, Lauf PK (1978) Ouabain binding and potassium transport in young and old populations of human red cells. Membr Biochem 1:187–202

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P (1974) Isolation of the (Na+-K+) ATPase. In: Fleisher S, Packer L (eds) Methods in enzymology, Vol 32. Academic Press, New York

    Google Scholar 

  • Jorgensen P, Skou JC (1971) Purification and characterisation of the (Na+-K+) ATPase. Biochim Biophys Acta 233:366–380

    Article  PubMed  CAS  Google Scholar 

  • Jungreis AM, Vaughan GL (1977) Insensitivity of lepidopteran tissues to ouabain: Absence of ouabain-binding and Na+-K+ ATPases in larval and adult midgut. J Insect Physiol 23:503–509

    Article  CAS  Google Scholar 

  • Kapoor NN (1980) Relationship between gill Na+ K+-activated ATPase activity and osmotic stress in the plecopteran nymph, Paragnetina media. J Exp Zool 213:213–218

    Article  PubMed  CAS  Google Scholar 

  • Karnaky K, Kinter LB, Kinter WB, Stirling CE (1976) Teleost chloride cell II. Autoradiographic localization of gill Na, K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol 70:157–177

    Article  PubMed  CAS  Google Scholar 

  • Kline MH, Hexum TD, Dahl JL, Hokin LE (1971) Studies on the characterisation of the sodium-potassium transport adenosine triphosphatase. Arch Biochem Biophys 142:781–787

    Article  Google Scholar 

  • Komnick H, Achenbach U (1979) Comparative biochemical, histochemical and autoradiographic studies of Na+/K+-ATPase in the rectum of dragonfly larvae (Odonata, Aeshnidae). Eur J Cell Biol 20:92–100

    PubMed  CAS  Google Scholar 

  • Kyte J (1976) Immunoferritin determination of the distribution of (Na+-K+) ATPase over the plasma membranes of renal convoluted tubules I. Distal segment. J Cell Biol 68:287–303

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer GE, Schwartz A (1973) Nature of the transport adenosine triphosphatase digitalis complex. IV. Evidence that sodium-potassium competition modulates the rate of ouabain interaction with (Na+-K+)-adenosine triphosphatase during enzyme catalysis. J Biol Chem 248:1291–1300

    PubMed  CAS  Google Scholar 

  • Marchesi VT, Palade GE (1967) The localization of Mg-Na-K-activated adeno- sine triphosphatase on red cell ghost membranes. J Cell Biol 35:385–404

    Article  PubMed  CAS  Google Scholar 

  • Matusi H, Schwartz A (1966) Purification and properties of a highly active ouabain-sensitive Na+,K+-dependent adenosine triphosphatase from cardiac tissue. Biochim Biophys Acta 128:380–390

    Google Scholar 

  • Mills JW, Dibona DR (1980) Relevance of the distribution of Na+ pump sites to models of fluid transport across epithelia. In: Bronner F, Keinzeller A (eds) Current topics in membranes and transport, Vol 13, pp 387–400. Academic Press, New York

    Google Scholar 

  • Mills JW, Ernst SA, Dibona DR (1977) Localization of Na+-pump sites in frog skin. J Cell Biol 73:88–110

    Article  PubMed  CAS  Google Scholar 

  • Mizuhira V, Amakawa T, Yamashina S, Shirai N, Utida S (1970) Electron microscopic studies on the localization of sodium ions and sodium-potassiumactivated adenosine triphosphatase in chloride cells of eel gills. Exp Cell Res 59:346–348

    Article  PubMed  CAS  Google Scholar 

  • Nakao T, Tashima Y, Nagano K, Nakao M (1965) Highly specific sodiumpotassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem Biophys Res Commun 19:755–758

    Article  PubMed  CAS  Google Scholar 

  • Norris DM, Cary LR (1982) Properties and subcellular distribution of Na+,K+ATPase and Mgt+-ATPase in the antennae of Periplaneta americana. Insect Biochem 11:743–750

    Google Scholar 

  • O’Neal SG, Rhoads SB, Racker E (1979) Vanadate inhibition of sarcoplasmic reticulum Cat+ ATPase and other ATPases. Biochem Biophys Res Commun 89:845–850

    Article  PubMed  Google Scholar 

  • Peacock AJ (1976a) The effect of corpus cardiacum extracts on the ATPase activity of locust rectum. Insect Biochem 22:1631–1634

    CAS  Google Scholar 

  • Peacock AJ (1976b) Distribution of Na+-K+-activated ATPase in the alimentary tract of Locusta migratoria. Insect Biochem 6:529–533

    Article  CAS  Google Scholar 

  • Peacock AJ (1977) Distribution of Na+-K+-activated ATPase in the hindgut of two insects Schistocerca and Blaberus. Insect Biochem 7:393–395

    Article  CAS  Google Scholar 

  • Peacock AJ (1978) Age dependent changes in Na+-K+, activated ATPase activity of locust rectum. Experientia 34:1546–1547

    Article  CAS  Google Scholar 

  • Peacock AJ (1979) A comparison of two methods for the preparation of Mgt+-dependent, (Na++K+) stimulated ATPase from the locust rectum. Insect Biochem 9:481–484

    Article  CAS  Google Scholar 

  • Peacock Ai (1981a) Further studies of the properties of locust rectal Na+-K+-ATPase, with particular reference to the ouabain sensitivity of the enzyme. Comp Biochem Physiol C 68:29–34

    Article  Google Scholar 

  • Peacock AJ (1981b) Distribution of (Na++K+)-ATPase activity in the mid-and hindguts of adult Glossina morsitans and Sarcophaga nodosa and the hind-gut of Bombyx mori larvae. Comp Biochem Physiol A 69:133–136.

    Article  Google Scholar 

  • Peacock AJ (1982) Effects of sodium transport inhibitors on diuresis and mid-gut (Na++K+)-ATPase in the tsetse fly Glossina morsitans. J Insect Physiol 28:553–558

    Article  CAS  Google Scholar 

  • Peacock AJ, Bowler K, Anstee JH (1972) Demonstration of a Na++K+-Mg2+dependent ATPase in a preparation from hindgut and Malpighian tubules of two species of insect. Experientia 28:901–902

    Article  CAS  Google Scholar 

  • Peacock AJ, Bowler K, Anstee JH (1976) Properties of Na+-K+-dependent ATPase from the Malpighian tubules and hindgut of Homorocoryphus nitidulus vicinus. Insect Biochem 6:281–288

    Article  CAS  Google Scholar 

  • Piccione W, Baust IG (1977) Effects of low temperature acclimation on neural Na+-K+ dependent ATPase in Periplaneta americana. Insect Biochem 7: 185–189

    Article  CAS  Google Scholar 

  • Post RL, Sen AK, Rosenthal AS (1965) A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney tubules. J Biol Chem 240:1437–1445

    PubMed  CAS  Google Scholar 

  • Proverbio F, Condrescu-Guidi M, Whittembury G (1975) Ouabain-insensitive Na+ stimulation of an Mg2+-dependent ATPase in kidney tissue. Biochim Biophys Acta 394:281–292

    Article  PubMed  CAS  Google Scholar 

  • Rivera ME (1975) The ATPase system in the compound eye of the blowfly, Calliphora enythrocephala (Meig.). Comp Biochem Physiol 52:227–234

    Article  CAS  Google Scholar 

  • Robbins AR, Baker RM (1977) (Na,K)ATPase activity in membrane preparations of ouabain resistant HeLa cells. Biochemistry 16:5163–5168

    Article  PubMed  CAS  Google Scholar 

  • Robinson JD, Flashner MS (1979) The (Na+-K+)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta 549:145–176

    PubMed  CAS  Google Scholar 

  • Rubin AL, Clark AF, Stahl WL (1980) Sodium, potassium stimulated adenosine triphosphatase in the nerve cord of the hawk moth, Manduca sexta. Comp Biochem Physiol B 67:271–275

    Article  Google Scholar 

  • Rubin AL, Clark AF, Stahl WL (1981) The insect brain (Na++K+)-ATPase. Binding of ouabain in the hawk moth, Manduca sexta. Biochim Biophys Acta 649:202–210

    Article  PubMed  CAS  Google Scholar 

  • Rutti B, Schlunegger B, Kaufman W, Aeschlimann A (1980) Properties of the Na, K-ATPase from the salivary glands of the ixodid tick Amblyomma hebraeum. Can J Zool 58:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G (1969) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  Google Scholar 

  • Schatzmann HJ (1953) Herzglykoside als slemmstoffe für den activen kalium and natrium transport durch die erythrocytenmembran. Helv Physiol Pharmacol Acta 11:346–354

    PubMed  CAS  Google Scholar 

  • Schin K, Kroeger H (1980) (Na++K+)ATPase activity in the salivary gland of a dipteran insect, Chironomus thummi. Insect Biochem 10:113–117

    Article  CAS  Google Scholar 

  • Schwartz A, Lindenmayer GE, Allen JC (1975) The sodium potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol Rev 27:3–134

    PubMed  CAS  Google Scholar 

  • Sen AK, Tobin T, Post RL (1969) A cycle for ouabain inhibition of sodium-and potassium-dependent adenosine triphosphatase. J Biol Chem 244:6596–6604

    PubMed  CAS  Google Scholar 

  • Shaver JLF, Stirling C (1978) Ouabain binding to renal tubules of the rabbit. J Cell Biol 76:278–292

    Article  PubMed  CAS  Google Scholar 

  • Siegel GJ, Josephson L (1972) Ouabain reaction with microsomal (Sodiumplus-Potassium)-activated adenosinetriphosphatase. Europ J Biochem 25: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1957) The influence of some cations on an ATPase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617

    PubMed  CAS  Google Scholar 

  • Skou JC (1975) The (Na++K+) activated enzyme system and its relationship to transport of sodium and potassium. Q Rev Biophys 7:401–434

    Article  Google Scholar 

  • Skou JC, Butler KW, Hansen O (1971) The effect of magnesium, ATP, Pi and sodium on the inhibition of the (Na++K+)-activated enzyme system by g-strophanthin. Biochim Biophys Acta 241:443–461

    Article  PubMed  CAS  Google Scholar 

  • Sprecht SE, Robinson JD (1973) Stimulation of the Na+-K+-dependent adenosine triphosphatase by amino acids and phosphatidylserine, chelation of trace metal inhibitors. Arch Biochem Biophys 154:314–323

    Article  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stirling CE (1972) Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714

    Article  PubMed  CAS  Google Scholar 

  • Stirling CE (1976) High resolution autoradiography of 3H-ouabain binding in salt transporting epithelia. J Microsc (Oxf) 106:145–157

    Article  CAS  Google Scholar 

  • Tirri R, Tumola P, Bowler K (1979) The presence of Na+ ATPase activity associated with mammalian brain microsomal preparations. Int J Biochem 11: 43–48

    Article  Google Scholar 

  • Tobin T, Sen AK (1970) Stability and ligand sensitivity of [3H] ouabain binding to (Na++K+)-ATPase. Biochim Biophys Acta 198:120–131

    PubMed  CAS  Google Scholar 

  • Tolman JH, Steele JE (1976) A ouabain-sensitive, (Na++K+)-activated ATPase in the rectal epithelium of the American cockroach, Periplaneta americana. Insect Biochem 6:513–517

    Article  CAS  Google Scholar 

  • Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain: Physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589

    Article  CAS  Google Scholar 

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH. With special reference to the demonstration of bile canali-culi. Am J Clin Pathol 27:13–23

    PubMed  CAS  Google Scholar 

  • Whittam R, Chipperfield AR (1975) The reaction mechanism of the sodium pump. Biochim Biophys Acta 415:149–171

    PubMed  CAS  Google Scholar 

  • Yap HH, Cutcomp LK (1970) Activity and rhythm of ATPases in larvae of the mosquito Aedes aegypti. Life Sci 9:1419–1425

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Anstee, J.H., Bowler, K. (1984). Techniques for Studying Na+,K+-ATPase. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics