Skip to main content

Coulometric Measurement of Oxygen Consumption in Insects

  • Chapter
Measurement of Ion Transport and Metabolic Rate in Insects

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

The energy metabolism of an animal may be affected by environmental factors (temperature, light, partial pressure of oxygen, etc.) as well as organismic properties (reproductive and nutritional status, stage of development, etc.). Changes in energy metabolism due to specific metabolic factors can only be interpreted in a meaningful way when all other organismic and environmental factors have been standardized or controlled during an experiment. In practice, this is best achieved when the energy metabolism of an animal is measured over long periods of time under environmental conditions that approximate those of the normal habitat. Of particular importance in the interpretation of metabolic data is the establishment of normal daily changes in energy metabolism due to circadian rhythms in locomotor activity. In general, animals display their daily periodicity only in an environment that does not stress them. For example, a single honeybee survives well for more than 1 week when the conditions inside the respiratory chamber approximate those in the beehive (the presence of beeswax and honey), but would die within a few hours when deprived of those conditions (Heusner and Stussi 1964). Drosophila display striking circadian variations in energy metabolism when placed in a simple glass respiratory chamber that contains a glucose-agar medium (Heusner 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam NK (1964) The chemical structure of solid surfaces as deduced from contact angles. In contact angle, wettability, and adhesion. Adv Chem Ser 43: 52–56

    Article  CAS  Google Scholar 

  • Bennet-Clark TA (1932) A method for automatically recording the oxygen intake of living tissues. Sci Proc Ro Dublin Soc 20:281–291

    CAS  Google Scholar 

  • Bockris JO’M, Enyo M (1962) Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Trans Faraday Soc 58:1187–1202

    Article  CAS  Google Scholar 

  • Brown Jr FA (1954) Simple automatic continuous recording respirometer. Rev Sci Instrum 25:415–417

    Article  Google Scholar 

  • Capraro V (1953) A new method of measuring oxygen consumed in the metabolism of small animals. Nature 172:815

    Article  PubMed  CAS  Google Scholar 

  • Chase AM, Unwin DM, Brown RHJ (1968) A simple electrolytic respirometer for the continuous recording of oxygen consumption under constant and natural conditions. J Exp Bio1 48:207–215

    CAS  Google Scholar 

  • DeBoer SP (1929) Respiration of Phytomycetes. Rec Tray Bot Neerl 25:117–329

    Google Scholar 

  • Fernandes DS (1923) Aerobe und anaerobe Atmung bei Keimlingen von Pisum sativum. Rec Tray Bot Neerl 20:103–256

    Google Scholar 

  • Fourche J (1964) Un respiromètre électrolytique pour l’étude des pupes isolées de drosophiles. Bull Biol Fr Belg 98:475–489

    Google Scholar 

  • Hayward JS, Nordan HC, Wood AJ (1963) A simple electrolytic respirometer for small animals. Can J Zool 41:63–68

    Article  CAS  Google Scholar 

  • Heusner AA (1965) Sources of error in the study of diurnal rhythm in energy metabolism. In: Aschoff J (ed) Circadian clocks, Proceedings of Feldafing Summer School, Sept 1964. North-Holland, Amsterdam

    Google Scholar 

  • Heusner AA (1970) Long term numerical recording of very small oxygen consumptions under sterile conditions. Respir Physiol 10:132–150

    Article  PubMed  CAS  Google Scholar 

  • Heusner AA, Jameson Jr. EW (1981) Seasonal changes in oxygen consumption and body composition of Sceloporus occidentalis. J Comp Biochem Physiol 69A:363–372

    Article  Google Scholar 

  • Heusner AA, Lavoipierre MMJ (1973) Effet énergétique du repas sanguin chez Aedes aegypti. C R Acad Sci D (Paris) 276:1725–1728

    Google Scholar 

  • Heusner A, Petrovic A (1964) Appareil de culture d’organes en milieu liquide continuellement oxygéné. Med Electron Biol Eng 2:381–385

    Article  PubMed  CAS  Google Scholar 

  • Heusner A, Ruhland ML (1959) Dispositif permettant l’enregistrement simultané de la consommation d’oxygène et de l’activité chez des poissons de petite taille. J Physiol (Paris) 51:580

    CAS  Google Scholar 

  • Heusner A, Stussi TH (1964) Métabolisme énergétique de l’abeille isolée: Son rôle dans la thermorégulation de la ruche. Insect Soc 11:239–266

    Article  Google Scholar 

  • Heusner A, Stussi TH, Dreyfus E (1965) Application de la coulométrie à la mesure de la consommation d’oxygène. Med Electron Biol Eng 3:39–56

    Article  PubMed  CAS  Google Scholar 

  • Heusner AA, Lavoipierre MMJ, Bond DC (1973) Etude cinétique de l’effet métabolique d’un repas sanguin chez Aedes aegypti. C R Acad Sci D (Paris) 277:2017–2020

    CAS  Google Scholar 

  • Heusner AA, Hurley JP, Arbogast R (1982) Coulometric microrespirometry. Am J Physiol 343:R185–R192

    Google Scholar 

  • Kayser CH, Heusner AA (1967) Le rythme nyctéméral de la dépense d’énergie. J Physiol (Paris) 59:3–116

    CAS  Google Scholar 

  • Klekowski RZ, Zajdel JW (1972) Capacity electrolytic respirometer KZ-CER-01T with review and discussion of electrolytic respirometry. Pol Arch Hydrobiol 19:475–504

    CAS  Google Scholar 

  • MacFayden A (1961) A new system for continuous respirometry of small air breathing invertebrates under near normal conditions. J Exp Biol 38:323–341

    Google Scholar 

  • Moyat P (1957) Uber den Einfluss von Licht und Aktivitat auf endogene Stoffwechselrhythmen bei Kleinsaugern und Vogeln. Z Vergl Physiol 40:397--414

    Article  Google Scholar 

  • Potter EC (1956) Electrochemistry principles and applications. Cleaver-Hume Press, London

    Google Scholar 

  • Richards WR, Collins E, Heimrod GW (1900) Das elektro-chemische Aequivalent des Kupfers und des Silbers. Z Phys Chem 32:321–347

    CAS  Google Scholar 

  • Stussi TH (1967) Thermogenèse de l’abeille et ses rapports avec le niveau thermique de la ruche. Thèse Etat Science, Lyon

    Google Scholar 

  • Stussi TH, Heusner A (1963) Variation nycthémérale de la consommation d’oxygène chez quelques espèces d’insectes. C R Soc Biol (Pairs) 157:1509–1512

    CAS  Google Scholar 

  • Swaby RJ, Passey BI (1953) A simple macrorespirometer for studies in soil microbiology. Aust J Agric Res 4:334–339

    Article  CAS  Google Scholar 

  • Turner BD, Stevenson RA (1974) An electrolytic, digital recording, multichannel microrespirometer. J. Exp Biol 61:321–329

    PubMed  CAS  Google Scholar 

  • Ulrich A (1940) Measurement of the respiratory quotient of plant tissues in a gaseous environment. Plant Physiol 15:527–536

    Article  PubMed  CAS  Google Scholar 

  • Wager HG, Porter FAE (1961) An apparatus for automatic measurement of oxygen uptake by electrolytic replacement of oxygen consumed. Biochem J 81:614–618

    CAS  Google Scholar 

  • Werthessen NT (1937) An apparatus for the measurement of the metabolic rate of small animals. J Biol Chem 119:233–239

    CAS  Google Scholar 

  • Winteringham FPW (1959) An electrolytic respirometer for insects. Lab Pract 8:372–375

    Google Scholar 

  • Wolbarsht ML, MacNichol Jr EF, Wagner HG (1960) Glass insulated platinum microelectrode. Science 132:1309–1310

    Article  PubMed  CAS  Google Scholar 

  • Woodland DJ (1973) The ozone problem in electrolytic respirometry and its solution. J Appl Ecol 10:661–662

    Article  Google Scholar 

  • Woodland DJ, Clack DJ (1975) Simplified constant temperature electrolytic respirometer. Lab Pract 24:518–521

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Heusner, A.A., Tracy, M.L. (1984). Coulometric Measurement of Oxygen Consumption in Insects. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics