Skip to main content

Autobiography of a Mathematical Statistician

  • Chapter

Keywords

  • Association Scheme
  • Indian Statistical Institute
  • Balance Incomplete Block Design
  • Indian Student
  • Family Accommodation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-8171-6_7
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4613-8171-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications and References

  1. Bose, R. C. (1932) On the number of circles of curvature perfectly enclosing or perfectly enclosed by a closed convex oval. Math. Z. 35, 16–24.

    MathSciNet  CrossRef  Google Scholar 

  2. Bose, R. C. (1936) On the exact distribution and moment-coefficients of the D 2-statistics. Sankhyā 2, 143–154.

    Google Scholar 

  3. Bose, R. C. (1939) On the construction of balanced incomplete block designs. Ann. Eugen., London 9, 358–399.

    Google Scholar 

  4. Bose, R. C. (1947) Mathematical theory of the symmetrical factorial design. Sankhyā 8, 107–166.

    MATH  Google Scholar 

  5. Bose, R. C. (1973) Graphs and Designs. Edizioni Cremonese, Rome, 1–104. (Based on a course of eight lectures delivered at the CMIE Summer Institute on Finite Geometrical Structures and their Applications, Bressanone, Italy, June, 1972).

    Google Scholar 

  6. Bose, R. C. and Connor, W. S. (1952) Combinatorial properties of group divisible incomplete block designs. Ann. Math. Statist. 23, 357–383.

    MathSciNet  Google Scholar 

  7. Bose, R. C. and Kishen, K. (1940) On the problem of confounding in the general symmetrical factorial design. Sankhyā 5, 21–36.

    MathSciNet  MATH  Google Scholar 

  8. Bose, R. C., Mahalanobis, P. C. and Roy, S. N. (1936) Normalization of variates and the use of rectangular coordinates in the theory of sampling distributions. Sankhyā 3, 1–40.

    Google Scholar 

  9. Bose, R. C. and Mesner, D. M. (1959) On the linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30, 21–38.

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Bose, R. C. and Nair, K. R. (1939) Partially balanced incomplete block designs. Sankhyā 4, 19–38.

    Google Scholar 

  11. Bose, R. C. and Ray-Chaudhuri, R. K. (1960) On a class of error detecting binary codes. Information and Control 3, 68–79.

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. Bose, R. C. and Roy, S. N. (1938) Distribution of the studentized D 2-statistic. Sankhyā 4, 19–38.

    MathSciNet  Google Scholar 

  13. Bose, R. C. and Shimamoto, T. (1952) Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47, 151–184.

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Bose, R. C. and Shrikhande, S. S. (1959) On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4t+2. Proc. Nat. Acad. Sci. USA 45, 734–737.

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Bose, R. C. and Shrikhande, S. S. (1960) On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95, 191–209.

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Bose, R. C., Shrikhande, S. S. and Bhattacharya, K. N. (1953) On the construction of group divisible incomplete block designs. Ann. Math. Statist. 24, 167–195.

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Bose, R. C., Shrikhande, S. S. and Parker, E. T. (1960) Further results on orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12, 189–203.

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Bose, R. C. and Srivastava, J. N. (1964) Analysis of irregular factorial fractions. Sankhyā A 26, 117–144.

    MathSciNet  MATH  Google Scholar 

  19. Cheng, Ching-Shui(1978) Optimality of certain asymmetrical experimental designs. Ann. Statist. 6, 1239–1261.

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Cheng, Ching-Shui(1981) The comparison of PBIB designs with two associate classes.

    Google Scholar 

  21. Euler, L. (1782) Recherches sur une nouvelle espèce des quarrés magiques. Fern. Zeevwsch Genoot. Weten. Vliss. 9, 85–239.

    Google Scholar 

  22. Fisher, R. A. (1942) The theory of confounding in factorial experiments in relation to the theory of groups. Ann. Eugen., London 11, 341–353.

    CrossRef  Google Scholar 

  23. Fisher, R. A. (1945) A system of confounding for factors with more than two alternatives giving completely orthogonal cubes and higher powers. Ann. Eugen., London 12, 283–290.

    CrossRef  Google Scholar 

  24. Hotelling, H. (1931) The generalization of the ‘Student ratio.’ Ann. Math. Statist. 2, 360–378.

    MATH  CrossRef  Google Scholar 

  25. Kiefer, J. (1975) Construction and optimality of generalized Youden designs. In A Survey of Statistical Design and Linear Models, ed. J. N. Srivastava, North-Holland, Amsterdam, 333–353.

    Google Scholar 

  26. Mahalanobis, P. C. (1930) On tests and measures of group divergence Part I: theoretical formulae. J. Asiatic. Soc. Bengal 26, 541–588.

    Google Scholar 

  27. Parker, E. T. Construction of some sets of mutually orthogonal Latin squares. Proc. Amer. Math. Soc. 10, 964–1951.

    Google Scholar 

  28. Srivastava, J. N. (ED.) (1973) A Survey of Combinatorial Theory (with the cooperation of F. Harary, C. R. Rao, G. C. Rota, and S. S. Shrikhande) North-Holland, Amsterdam.

    MATH  Google Scholar 

  29. Tarry, G. (1900) Le problème des 36 officiers. C. R. Ass. Franç. Av. Sci. Nat. 1, 122–123.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Applied Probability Trust

About this chapter

Cite this chapter

Bose, R.C. (1982). Autobiography of a Mathematical Statistician. In: Gani, J. (eds) The Making of Statisticians. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8171-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8171-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8173-0

  • Online ISBN: 978-1-4613-8171-6

  • eBook Packages: Springer Book Archive