## Keywords

Association Scheme Indian Statistical Institute Balance Incomplete Block Design Indian Student Family Accommodation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## Publications and References

- [1]Bose, R. C. (1932) On the number of circles of curvature perfectly enclosing or perfectly enclosed by a closed convex oval.
*Math. Z*.**35**, 16–24.MathSciNetCrossRefGoogle Scholar - [2]Bose, R. C. (1936) On the exact distribution and moment-coefficients of the
*D*^{2}-statistics.*Sankhyā***2**, 143–154.Google Scholar - [3]Bose, R. C. (1939) On the construction of balanced incomplete block designs.
*Ann. Eugen., London***9**, 358–399.Google Scholar - [4]Bose, R. C. (1947) Mathematical theory of the symmetrical factorial design.
*Sankhyā***8**, 107–166.zbMATHGoogle Scholar - [5]Bose, R. C. (1973)
*Graphs and Designs*. Edizioni Cremonese, Rome, 1–104. (Based on a course of eight lectures delivered at the CMIE Summer Institute on Finite Geometrical Structures and their Applications, Bressanone, Italy, June, 1972).Google Scholar - [6]Bose, R. C. and Connor, W. S. (1952) Combinatorial properties of group divisible incomplete block designs.
*Ann. Math. Statist*.**23**, 357–383.MathSciNetGoogle Scholar - [7]Bose, R. C. and Kishen, K. (1940) On the problem of confounding in the general symmetrical factorial design.
*Sankhyā***5**, 21–36.MathSciNetzbMATHGoogle Scholar - [8]Bose, R. C., Mahalanobis, P. C. and Roy, S. N. (1936) Normalization of variates and the use of rectangular coordinates in the theory of sampling distributions.
*Sankhyā***3**, 1–40.Google Scholar - [9]Bose, R. C. and Mesner, D. M. (1959) On the linear associative algebras corresponding to association schemes of partially balanced designs.
*Ann. Math. Statist*.**30**, 21–38.MathSciNetzbMATHCrossRefGoogle Scholar - [10]Bose, R. C. and Nair, K. R. (1939) Partially balanced incomplete block designs.
*Sankhyā***4**, 19–38.Google Scholar - [11]Bose, R. C. and Ray-Chaudhuri, R. K. (1960) On a class of error detecting binary codes.
*Information and Control***3**, 68–79.MathSciNetzbMATHCrossRefGoogle Scholar - [12]Bose, R. C. and Roy, S. N. (1938) Distribution of the studentized
*D*^{2}-statistic.*Sankhyā***4**, 19–38.MathSciNetGoogle Scholar - [13]Bose, R. C. and Shimamoto, T. (1952) Classification and analysis of partially balanced incomplete block designs with two associate classes.
*J. Amer. Statist. Assoc*.**47**, 151–184.MathSciNetzbMATHCrossRefGoogle Scholar - [14]Bose, R. C. and Shrikhande, S. S. (1959) On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4
*t*+2.*Proc. Nat. Acad. Sci. USA***45**, 734–737.MathSciNetzbMATHCrossRefGoogle Scholar - [15]Bose, R. C. and Shrikhande, S. S. (1960) On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler.
*Trans. Amer. Math. Soc*.**95**, 191–209.MathSciNetzbMATHCrossRefGoogle Scholar - [16]Bose, R. C., Shrikhande, S. S. and Bhattacharya, K. N. (1953) On the construction of group divisible incomplete block designs.
*Ann. Math. Statist*.**24**, 167–195.MathSciNetzbMATHCrossRefGoogle Scholar - [17]Bose, R. C., Shrikhande, S. S. and Parker, E. T. (1960) Further results on orthogonal Latin squares and the falsity of Euler’s conjecture.
*Canad. J. Math*.**12**, 189–203.MathSciNetzbMATHCrossRefGoogle Scholar - [18]Bose, R. C. and Srivastava, J. N. (1964) Analysis of irregular factorial fractions.
*Sankhyā*A**26**, 117–144.MathSciNetzbMATHGoogle Scholar - [19]Cheng, Ching-Shui(1978) Optimality of certain asymmetrical experimental designs.
*Ann. Statist*.**6**, 1239–1261.MathSciNetzbMATHCrossRefGoogle Scholar - [20]
- [21]Euler, L. (1782) Recherches sur une nouvelle espèce des quarrés magiques.
*Fern. Zeevwsch Genoot. Weten. Vliss*.**9**, 85–239.Google Scholar - [22]Fisher, R. A. (1942) The theory of confounding in factorial experiments in relation to the theory of groups.
*Ann. Eugen., London***11**, 341–353.CrossRefGoogle Scholar - [23]Fisher, R. A. (1945) A system of confounding for factors with more than two alternatives giving completely orthogonal cubes and higher powers.
*Ann. Eugen., London***12**, 283–290.CrossRefGoogle Scholar - [24]Hotelling, H. (1931) The generalization of the ‘Student ratio.’
*Ann. Math. Statist*.**2**, 360–378.zbMATHCrossRefGoogle Scholar - [25]Kiefer, J. (1975) Construction and optimality of generalized Youden designs. In
*A Survey of Statistical Design and Linear Models*, ed. J. N. Srivastava, North-Holland, Amsterdam, 333–353.Google Scholar - [26]Mahalanobis, P. C. (1930) On tests and measures of group divergence Part I: theoretical formulae.
*J. Asiatic. Soc. Bengal***26**, 541–588.Google Scholar - [27]Parker, E. T. Construction of some sets of mutually orthogonal Latin squares.
*Proc. Amer. Math. Soc*.**10**, 964–1951.Google Scholar - [28]Srivastava, J. N. (ED.) (1973)
*A Survey of Combinatorial Theory*(with the cooperation of F. Harary, C. R. Rao, G. C. Rota, and S. S. Shrikhande) North-Holland, Amsterdam.zbMATHGoogle Scholar - [29]Tarry, G. (1900) Le problème des 36 officiers.
*C. R. Ass. Franç. Av. Sci. Nat*.**1**, 122–123.Google Scholar

## Copyright information

© Applied Probability Trust 1982