Autobiography of a Mathematical Statistician

  • R. C. Bose


Depression Europe Covariance Influenza Income 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications and References

  1. [1]
    Bose, R. C. (1932) On the number of circles of curvature perfectly enclosing or perfectly enclosed by a closed convex oval. Math. Z. 35, 16–24.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bose, R. C. (1936) On the exact distribution and moment-coefficients of the D 2-statistics. Sankhyā 2, 143–154.Google Scholar
  3. [3]
    Bose, R. C. (1939) On the construction of balanced incomplete block designs. Ann. Eugen., London 9, 358–399.Google Scholar
  4. [4]
    Bose, R. C. (1947) Mathematical theory of the symmetrical factorial design. Sankhyā 8, 107–166.MATHGoogle Scholar
  5. [5]
    Bose, R. C. (1973) Graphs and Designs. Edizioni Cremonese, Rome, 1–104. (Based on a course of eight lectures delivered at the CMIE Summer Institute on Finite Geometrical Structures and their Applications, Bressanone, Italy, June, 1972).Google Scholar
  6. [6]
    Bose, R. C. and Connor, W. S. (1952) Combinatorial properties of group divisible incomplete block designs. Ann. Math. Statist. 23, 357–383.MathSciNetGoogle Scholar
  7. [7]
    Bose, R. C. and Kishen, K. (1940) On the problem of confounding in the general symmetrical factorial design. Sankhyā 5, 21–36.MathSciNetMATHGoogle Scholar
  8. [8]
    Bose, R. C., Mahalanobis, P. C. and Roy, S. N. (1936) Normalization of variates and the use of rectangular coordinates in the theory of sampling distributions. Sankhyā 3, 1–40.Google Scholar
  9. [9]
    Bose, R. C. and Mesner, D. M. (1959) On the linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30, 21–38.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Bose, R. C. and Nair, K. R. (1939) Partially balanced incomplete block designs. Sankhyā 4, 19–38.Google Scholar
  11. [11]
    Bose, R. C. and Ray-Chaudhuri, R. K. (1960) On a class of error detecting binary codes. Information and Control 3, 68–79.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Bose, R. C. and Roy, S. N. (1938) Distribution of the studentized D 2-statistic. Sankhyā 4, 19–38.MathSciNetGoogle Scholar
  13. [13]
    Bose, R. C. and Shimamoto, T. (1952) Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47, 151–184.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Bose, R. C. and Shrikhande, S. S. (1959) On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4t+2. Proc. Nat. Acad. Sci. USA 45, 734–737.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Bose, R. C. and Shrikhande, S. S. (1960) On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95, 191–209.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Bose, R. C., Shrikhande, S. S. and Bhattacharya, K. N. (1953) On the construction of group divisible incomplete block designs. Ann. Math. Statist. 24, 167–195.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Bose, R. C., Shrikhande, S. S. and Parker, E. T. (1960) Further results on orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12, 189–203.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Bose, R. C. and Srivastava, J. N. (1964) Analysis of irregular factorial fractions. Sankhyā A 26, 117–144.MathSciNetMATHGoogle Scholar
  19. [19]
    Cheng, Ching-Shui(1978) Optimality of certain asymmetrical experimental designs. Ann. Statist. 6, 1239–1261.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Cheng, Ching-Shui(1981) The comparison of PBIB designs with two associate classes.Google Scholar
  21. [21]
    Euler, L. (1782) Recherches sur une nouvelle espèce des quarrés magiques. Fern. Zeevwsch Genoot. Weten. Vliss. 9, 85–239.Google Scholar
  22. [22]
    Fisher, R. A. (1942) The theory of confounding in factorial experiments in relation to the theory of groups. Ann. Eugen., London 11, 341–353.CrossRefGoogle Scholar
  23. [23]
    Fisher, R. A. (1945) A system of confounding for factors with more than two alternatives giving completely orthogonal cubes and higher powers. Ann. Eugen., London 12, 283–290.CrossRefGoogle Scholar
  24. [24]
    Hotelling, H. (1931) The generalization of the ‘Student ratio.’ Ann. Math. Statist. 2, 360–378.MATHCrossRefGoogle Scholar
  25. [25]
    Kiefer, J. (1975) Construction and optimality of generalized Youden designs. In A Survey of Statistical Design and Linear Models, ed. J. N. Srivastava, North-Holland, Amsterdam, 333–353.Google Scholar
  26. [26]
    Mahalanobis, P. C. (1930) On tests and measures of group divergence Part I: theoretical formulae. J. Asiatic. Soc. Bengal 26, 541–588.Google Scholar
  27. [27]
    Parker, E. T. Construction of some sets of mutually orthogonal Latin squares. Proc. Amer. Math. Soc. 10, 964–1951.Google Scholar
  28. [28]
    Srivastava, J. N. (ED.) (1973) A Survey of Combinatorial Theory (with the cooperation of F. Harary, C. R. Rao, G. C. Rota, and S. S. Shrikhande) North-Holland, Amsterdam.MATHGoogle Scholar
  29. [29]
    Tarry, G. (1900) Le problème des 36 officiers. C. R. Ass. Franç. Av. Sci. Nat. 1, 122–123.Google Scholar

Copyright information

© Applied Probability Trust 1982

Authors and Affiliations

  • R. C. Bose

There are no affiliations available

Personalised recommendations