Advertisement

Minimal Surfaces, Gauss Maps, Total Curvature, Eigenvalue Estimates, and Stability

Conference paper

Abstract

The subject matter that I wish to discuss here is one that seems particularly appropriate to this occasion. It is in fact, as will become abundantly clear, one of the many parts of differential geometry where Chern’s influence has been both fundamental and pervasive. What is more, a substantial portion of the body of recent work described here is closely related to, and in many cases directly inspired by, a single paper of Chern’s [19]—his first paper devoted to the theory of minimal surfaces.

Keywords

Riemannian Manifold Minimal Surface Gauss Curvature Curvature Vector Total Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Bandle, Konstruktion isoperimetrischer Ungleichungen der mathematischen Physik aus solchen der Geometrie, Comment. Math. Hely. 46, 182 - 213 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J. L. Barbosa, On minimal immersions of S2 in S 2m . Trans. Amer. Math. Soc. 210, 75 - 106 (1975).MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. L. Barbosa, and M. doCarmo, On the size of a stable minimal surface in R 3 . Amer. J. Math. 98, 515 - 528 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    J. L. Barbosa, Stability of minimal surfaces and eigenvalues of the Laplacian, Math. Z., to appear.Google Scholar
  5. [5]
    J. L. Barbosa, Stability of minimal surfaces in spaces of constant curvature. Preprint.Google Scholar
  6. [6]
    J. L. Barbosa, A necessary condition for a metric in M“ to be minimally immersed in 58”+ 1. Preprint.Google Scholar
  7. [7]
    W. Blaschke, Sulla geometria differenziale delle superficie S2 nello spazio euclideo S 4 Ann. Mat. Pura Appl(4) 28205 - 209 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    O. Borúvka, Sur les surfaces représentées par les fonctions sphériques de première espèce. J. Math. Pures Appl. 12, 336 - 383 (1933).Google Scholar
  9. [9]
    E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. 58, 1 - 23 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    E. Calabi, Minimal immersions of surfaces in euclidean spheres, J. Diff. Geom. 1, 111 - 125 (1967).MathSciNetzbMATHGoogle Scholar
  11. [11]
    E. Calabi, Quelques applications de l’analyse complexe aux surfaces d’aire minima, in Topics in Complex Manifolds, Presses de l’Université de Montréal, 1968, pp. 58–81.Google Scholar
  12. [12]
    I. Chavel and E. A. Feldman, Isoperimetric inequalities on curved surfaces. Adv. Math., to appear.Google Scholar
  13. [13]
    B. -Y. Chen, Geometry of Submanifolds. Marcel Dekker, New York, 1973.zbMATHGoogle Scholar
  14. [14]
    C. C. Chen, Complete minimal surfaces with total curvature —ter. Boletim da Soc Mat. Brasil. 10, 71 - 76 (1979).zbMATHCrossRefGoogle Scholar
  15. [15]
    C. C. Chen, A characterization of the catenoid, An. Acad. Brasil Ciênc. 511 - 3 (1979).Google Scholar
  16. [16]
    C. C. Chen, Elliptic functions and non-existence of complete minimal surfaces of certain type. Proc. Amer. Math. Soc., 79, 289–293 (1980).MathSciNetzbMATHGoogle Scholar
  17. [17]
    S. -S. Chern, On the multiplication in the characteristic ring of a sphere bundle, Ann. of Math. 49, 362 - 372 (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S. -S. Chern, La géométrie des sous-variétés d’un espace euclidien é plusieurs dimensions, L’Enseignement Math. 40, 26–46 (1951–1954).MathSciNetGoogle Scholar
  19. [19]
    S. -S. Chern, Minimal surfaces in an euclidean space of Ndimensions. In Differential and Combina- torial Topology, Princeton U. P., 1965, pp. 187 - 198.Google Scholar
  20. [20]
    S. -S. Chern, On the minimal immersions of the two sphere in a space of constant curvature. In Problems in Analysis, Princeton U. P. 1970, pp. 27–40.Google Scholar
  21. [21]
    S. -S. Chern, On minimal spheres in the four-sphere. In Studies and Essays Presented to Y. W. Chen, Taiwan, 1970, pp. 137–150.Google Scholar
  22. [22]
    S. -S. Chern and S. I. Goldberg, On the volume-decreasing property of a class of real harmonic mappings. Amer. J. Math. 97, 133 - 147 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    S. -S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. Amer. J. Math., 79, 306–318 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    S. -S. Chern and R. K. Lashof, On the total curvature of immersed manifolds II. Mich. Math. J. 5, 5 - 12 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    S. -S. Chern and R. Osserman, Complete minimal surfaces in Euclidean n-space. J. d’Anal. Math. 19, 15 - 34 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. -S. Chern and E. Spanier, A theorem on orientable surfaces in four-dimensional space. Comment. Math. Helv. 25, 1 - 5 (1951).MathSciNetCrossRefGoogle Scholar
  27. [27]
    M doCarmo and C. N. Peng, Stable complete minimal surfaces in 083 are planes. Preprint.Google Scholar
  28. [28]
    M. doCarmo and A. M. daSilveira, Globally stable complete minimal surfaces in P83. Proc. Amer. Math. Soc., to appear.Google Scholar
  29. [29]
    P. Dombrowski, 150 Years after Gauss’ “Disquisitiones generales circa superficies curvas.” Astérisque 62, 1 - 153 (1979).MathSciNetzbMATHGoogle Scholar
  30. [30]
    J. Eells and L. Lemaire, A report on harmonic maps. Bull. London Math. Soc. 10, 1 - 68 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    J. Eells and L. Lemaire, On the construction of harmonic and holomorphic maps between surfaces. Preprint.Google Scholar
  32. [32]
    J. A. Erbacher, Reduction of the codimension of an isometric immersion. J. Diff. Geom. 5, 333 - 340 (1971).MathSciNetzbMATHGoogle Scholar
  33. [33]
    L H. Farber Lying, Despair, Jealousy, Envy, Sex, Suicide, Drugs and the Good Life. Harper and Row, New York, 1978.Google Scholar
  34. [34]
    D. Ferus, Totale Absolutkriimmung in Differentialgeometrie und Topologie. Springer, Berlin, 1968.zbMATHGoogle Scholar
  35. [35]
    D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Preprint.Google Scholar
  36. [36]
    F. Gackstatter, Uber die Dimension einer Minimalfläche und zur Ungleichung von St. Cohn—Vossen. Arch. Rat. Mech. Anal. 61, 141 - 152 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    S. Hildebrandt, J. Jost, and K.-O. Widman, Harmonic mappings and minimal submanifolds. Preprint.Google Scholar
  38. [38]
    H. L. Hiller, On the cohomology of real Grassmannians. Trans. Amer. Math. Soc. 257, 521 - 533 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    D. Hoffman, Lower bounds on the first eigenvalue of the Laplacian of Riemannian manifolds. In Minimal Submanifolds and Geodesics. (Proceedings of the Japan—United States Seminar on Minimal Submanifolds, including Geodesics, Toyko, 1977), Kaigai, Tokyo, 1978 pp. 61–72.Google Scholar
  40. [40]
    D. Hoffman and R. Osserman, The geometry of the generalized Gauss map. Memoirs Amer. Math. Soc., to appear.Google Scholar
  41. [41]
    D. Hoffman and R. Osserman, The area of the generalized Gaussian image and the stability of minimal surfaces in S“ and x Preprint.Google Scholar
  42. [42]
    D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds. Communications Pure Appl. Math. 27, 715–727 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  43. D. Hoffman and J. Spruck, correction ibid. 28, 765–766 (1975).MathSciNetzbMATHGoogle Scholar
  44. [43]
    C. Jordan, Généralisation du théorème d’Euler sur la courbure des surfaces. C. R. Acad. Sci. Paris 79, 909 - 912 (1874).Google Scholar
  45. [44]
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol ICI, Interscience, New York, 1969.zbMATHGoogle Scholar
  46. [45]
    H. B. Lawson, Jr., The global behavior of minimal surfaces in S“. Ann. of Math. 92, 224 - 237 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  47. [46]
    H. B. Lawson, Jr., Complete minimal surfaces in S 3 . Ann. of Math. 92335 - 374 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  48. [47]
    H. B. Lawson, Jr., Lectures on Minimal Surfaces. IMPA, Rio de Janeiro 1970.Google Scholar
  49. [48]
    H. B. Lawson, Jr., Some intrinsic characterizations of minimal surfaces. J. d’Anal. Math. 24, 151 - 161 (1971).MathSciNetCrossRefGoogle Scholar
  50. [49]
    K. Leichtweiss, Zur Riemannschen Geometrie in Grassmannschen Manningfaltigkeiten. Math. Z. 76, 334 - 366 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  51. [50]
    K. Leichtweiss, Uber eine Art von Krümmungsinvarianten beliebiger Untermannigfaltigkeiten des n-dimensionalen euklidischen Raums. Abh. Math. Seminar Univ. Hamburg 26, 155 - 190 (1963).MathSciNetCrossRefGoogle Scholar
  52. [51]
    H. Mori, Notes on the stability of minimal submanifolds of Riemannian manifolds. Yokohama Math. J. 25, 9 - 15 (1977).MathSciNetzbMATHGoogle Scholar
  53. [52]
    H. Mori, A note on the stability of minimal surfaces in the 3-dimensional unit sphere. Indiana Univ. Math. J. 26, 977 - 980 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  54. [53]
    Y. Mutu, The Gauss map of a submanifold in a Euclidean space. J. Math. Soc. Japan 30, 85 - 100 (1978).MathSciNetCrossRefGoogle Scholar
  55. [54]
    Y. Mutu, Index of some Gauss-critical submanifolds. Tâhoku Math. J. 30, 561 - 573 (1978).CrossRefGoogle Scholar
  56. [55]
    J. C. C. Nitsche, A new uniquesness theorem for minimal surfaces. Arch. Rat. Mech. Anal. 52, 319 - 329 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  57. [56]
    M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Diff. Geom. 2, 217 - 223 (1968).MathSciNetzbMATHGoogle Scholar
  58. [57]
    K. Ogiue, Differential geometry of Kaehler submanifolds. Advances in Math. 13, 73–114 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  59. [58]
    R. Osserman, Proof of a conjecture of Nirenberg. Comm. Pure Appl. Math. 12, 229 - 232 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  60. [59], Global properties of minimal surfaces in E3 and E“. Ann. of Math. 80, 340 - 364 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  61. [60]
    J. Peetre, A generalization of Courant’s nodal line theorem. Math. Scand. 5, 15 - 20 (1959).MathSciNetGoogle Scholar
  62. [61]
    M. Pinl, B-Kugelbilder reeler Minimalflächen in R 4 . Math. Z. 59, 290 - 295 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  63. [62]
    M. Pinl, Uber einen Satz von G. Ricci-Curbastro und die Gaussche Krümmung der Minimal- flächen I, II. Arch. Math. 4, 369–373 (1953), 15, 232–240 (1964).Google Scholar
  64. [63]
    E. A. Ruh and J. Vilms, The tension field of the Gauss map. Trans. AMS 149, 569 - 573 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  65. [64]
    R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. of Math. 110, 127 - 142 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  66. [65]
    R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45 - 76 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  67. [66]
    U. Simon, A further method in global geometry. Abh. Math. Sem. Univ. Hamburg 44, 52 - 69 (1975).MathSciNetCrossRefGoogle Scholar
  68. [67]
    J. Simons, Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62 - 105 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  69. [68]
    M. Spivak, A Comprehensive Introduction to Differential Geometry. 2nd Ed. Vols. 1–5, Publish or Perish, Inc., Berkeley, 1979.Google Scholar
  70. [69]
    J. Spruck, Remarks on the stability of minimal submanifolds of W. Math. Z. 144, 169 - 174 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  71. [70]
    P. Wintgen, On the total curvature of surfaces in E4. Collog. Math. 39, 289 - 296 (1978).MathSciNetzbMATHGoogle Scholar
  72. [71]
    Y. C. Wong, Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. U.S.A. 57, 589 - 594 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  73. [72]
    Y. C. Wong, Sectional curvatures of Grassmanian manifolds. Proc. Natl. Acad. Sci. 60, 75 - 79 (1968).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations