Advertisement

Remarks on Nonlinear Problems

Conference paper
  • 303 Downloads

Abstract

Chern’s work has covered all branches of the tree of differential geometry, including problems of hard analysis. Differential equations arising in geometric problems are often nonlinear, and this talk will be an informal presentation of some of the techniques that are used in proving existence of solutions of global nonlinear problems:
$$ F(u) = y $$
.

Keywords

Minimal Surface Obstacle Problem Critical Point Theory Degree Theory Nonlinear Functional Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ambrosetti, and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal. 14, 349 - 381 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    American Mathematical Society, Global Analysis, Proceedings of a Symposium on Pure Mathematics, Providence, 1970, Vol. 15.Google Scholar
  3. [3]
    V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52, 241 - 273 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. S. Berger, Nonlinearity and Functional Analysis, Academic, New York, 1977.zbMATHGoogle Scholar
  5. [5]
    R. Böhme, A plateau problem with many solutions, to appear.Google Scholar
  6. [6]
    R. Böhme and A. J. Tromba, The index theorem for classical minimal surfaces, Sonder= forschungsbereich 72, Bonn, Reprint No. 165.Google Scholar
  7. [7]
    Yu. G. Borisovich, V. G. Zvyagin, and Yu. I. Sapronov, Nonlinear Fredholm maps and the Leray—Schauder theorem, Uspekhi Mat. Nauk 32, 3–54 (1977)zbMATHGoogle Scholar
  8. Yu. G. Borisovich, V. G. Zvyagin, and Yu. I. Sapronov, Engl. transi., Russian Math. Surveys 32, 1 - 54 (1977).zbMATHCrossRefGoogle Scholar
  9. [8]
    F. Browder, Nonlinear operators in Banach spaces, In Proc. Symp. Pure Math. 18, Part 2, Amer. Math. Soc., Providence, R. I.. 1976.Google Scholar
  10. [9]
    K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math., 33, 117–146 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [10]
    F. H. Clarke and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., 33, 103–116 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [11]
    K. D. Elworthy and A. J. Tromba, Differential structures and Fredholm maps. In Proc. Symp. Global Anal. 15, Amer. Math. Soc., Providence, R. I., 1970, pp. 45–94.Google Scholar
  13. [12]
    K. D. Elworthy and A. J. Tromba, Degree theory on Banach manifolds. In Proc. Symp. Pure Math. 18, Part I, Nonlinear Functional Analysis, Amer. Math. Soc., 1970, pp. 86–94.Google Scholar
  14. [13]
    F. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, 134–174 (1978).MathSciNetCrossRefGoogle Scholar
  15. [14]
    K. Geba and A. Granas, Infinite dimensional cohomology theories, J. Math. Pure Appl. 52, 145 - 270 (1973).MathSciNetzbMATHGoogle Scholar
  16. [15]
    J. Leray and J. Schauder, Topologie at équations fonctionelles, Ann. Sci. Ec. Norm. Sup. 51, 45 - 78 (1934).MathSciNetzbMATHGoogle Scholar
  17. [16]
    N. G. Lloyd, Degree Theory, Cambridge Tract in Math. 73, Cambridge U. P., London, 1978.Google Scholar
  18. [17]
    W. M. Ni, Some minimax principles and their applications in nonlinear elliptic equations. J. d’Analyse, 37, 248–275 (1980).zbMATHCrossRefGoogle Scholar
  19. [18]
    L. Nirenberg, An application of generalized degree to a class of nonlinear problems, In 3rd Colloq. Anal. Fonct., Liège Centre Belge de Rech. Math., pp. 57–73 (1971).Google Scholar
  20. [19]
    L. Nirenberg, Topics in Nonlinear Functional Analysis, Lecture Notes, Courant Inst., 1974.zbMATHGoogle Scholar
  21. [20]
    J. C. C. Nitsche, A new uniqueness theorem for minimal surfaces, Arch. Rat. Mech. Anal. 52, 319 - 329 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [21]
    R.S. Palais, Critical point theory and the minimax principle, Proc. Symp. Pure Math. 15, Amer. Math. Soc., Providence, R.I., pp. 185–212 (1970).Google Scholar
  23. [22]
    P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems (CIME), Verona (1974). In Ediz. Cremonese, Rome, 1974, pp. 141–195.Google Scholar
  24. [23]
    P. H. Rabinowitz, Free vibrations for a semilinear equation, Pure Appl. Math. 31, 31 - 68 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [24]
    P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure AppL Math. 31, 157 - 184 (1978).MathSciNetCrossRefGoogle Scholar
  26. [25]
    P. H. Rabinowitz, A variational method for finding periodic solutions of differential equations, M. R. C. Univ. of Wisconsin Report 1854. Mar. 1978.Google Scholar
  27. [26]
    D. H. Sattinger, Topics in Stability and Bifurcation Theory. Springer Lecture Notes No. 309, 1973.Google Scholar
  28. [27]
    J. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969.zbMATHGoogle Scholar
  29. [28]
    J. Sylvester, Ph.D. Thesis, Courant Inst. Math. Sci., New York Univ., 1980.Google Scholar
  30. [29]
    E. Zeidler, Vorlesungen uber Nichtlineare Funktionalanalysis I-III, Teubner Texte zur Math., Leipzig, 1976–1977.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations