Advertisement

Tight Embeddings and Maps. Submanifolds of Geometrical Class Three in EN

  • Nicolaas H. Kuiper

Abstract

Differential geometry is a field in which geometry is expressed in analysis, algebra, and calculations, and in which analysis and calculations are sometimes understood in intuitive steps that could be called geometric.

Keywords

Projective Plane Convex Body Half Space Projective Transformation Closed Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. F. Banchoff, Tightly embedded 2-dimensional polyhedral manifolds. Amer. J. Math. 87, 462 - 472 (1965).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. F. Banchoff, Critical points and curvature for embedded polyhedra. J. Differential Geometry(1967).Google Scholar
  3. [3]
    T. F. Banchoff, The spherical two-piece property and tight surfaces in spheres. J. Differential Geometry 4, 193 - 205 (1970).MathSciNetMATHGoogle Scholar
  4. [4]
    T. F. Banchoff, The two-piece property and tight n-manifolds-with-boundary in E“. Trans. Amer. Math. Soc 161, 233 - 267 (1971).MathSciNetGoogle Scholar
  5. [5]
    T. F. Banchoff, Tight polyhedral Klein bottles, projective planes and Moebius bands. Math. Ann. 207, 233 - 243 (1974).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    K. Borsuk, Sur la courbure totale des courbes. Ann, de la Soc. Math. Pol. 20, 251 - 265 (1947).MathSciNetGoogle Scholar
  7. [7]
    S. Carter and A. West, Tight and taut immersions. Proc. London Math. Soc. 25701 - 720 (1972).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    T. Cecil, Taut immersions of noncompact surfaces into a euclidean 3-space. J. Differential Geometry 11, 451 - 459 (1976).MathSciNetMATHGoogle Scholar
  9. [9]
    T. E. Cecil and P. J. Ryan, Focal sets, taut embeddings and the cyclides of Dupin. Math. Ann. 236(1978), 177 - 190.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    C. S. Chen and W. F. Pohl, On the classification of tight surfaces in a euclidean 4-space. Preprint.Google Scholar
  11. [11]
    C. S. Chen, On the tight isometric immersions of codimension two. Amer. J. Math. 94, 974 - 990 (1972).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    S. S. Chern, La geometrie des sous-variétés d’un espace euclidien à plusieurs dimensions. Enseignement Math. 40, 5. 12 (1955).MathSciNetGoogle Scholar
  13. [13]
    S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds I, II. Amer. J. Math. 79, 306–313 (1957);MathSciNetCrossRefGoogle Scholar
  14. S. S. Chern and R. K. Lashof, Mich. Math. J. 5, 5. 12 (1958).MathSciNetGoogle Scholar
  15. [14]
    C. L. Chevalley, Theory of Lie groups. Princeton U. P., (1946).MATHGoogle Scholar
  16. [15]
    R. D. Edwards, The topology of manifolds and cell-like maps. Preprint I.H.E.S., 1979, 28 pp.Google Scholar
  17. [16]
    J. Eells and N. H. Kuiper, Manifolds which are like projective planes, Publ. Math. LH.E.S. 14128 - 222 (1962).Google Scholar
  18. [17]
    S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology. Princeton U. P., 1952.MATHGoogle Scholar
  19. [18]
    I. Fary, Sur la courbure totale d’une courbe gauche faisant un noeud. Bull. Soc. Math. France 77, 128 - 138 (1949).MathSciNetMATHGoogle Scholar
  20. [19]
    W. Fenchel, Uber die Krummung und Windung geschlossener Raumkurven. Math. Ann. 101, 238–252 (1929).MathSciNetMATHCrossRefGoogle Scholar
  21. [20]
    D. Ferus, Uber die absolute Totalkrümmung höher-dimensionaler Knoten. Math. Ann. 171, 81 - 86 (1971).MathSciNetCrossRefGoogle Scholar
  22. [21]
    D. Ferus, Totale Absolutkrúmmung in Differentialgeometrie und Topologie. Lecture Notes in Mathematics No. 66, Springer, Berlin, Heidelberg, New York, 1968.Google Scholar
  23. [22]
    D. Ferus, Symmetric submanifolds of euclidean space. preprint, 1979.Google Scholar
  24. [23]
    R. H. Fox, On the total curvature of some tame knots. Ann. Math. 52258 - 261 (1950).MATHCrossRefGoogle Scholar
  25. [24]
    H. Freudenthal, Zur ebenen Oktavengeometrie. Proc. Akad. Amsterdam A 56 Google Scholar
  26. H. Freudenthal, Indag. Math. 15, 195 - 200 (1953).MathSciNetGoogle Scholar
  27. [25]
    H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie. Preprint, Math. Inst. Univ. Utrecht, 1951.Google Scholar
  28. [26]
    P. Haupt and H. Künneth, Geometrische Ordnungen, Springer, Berlin, 1967.Google Scholar
  29. [27]
    Guy Hirsch, “La Géométrie projective et la topologie des espaces fibrés. In Topologie Algébrique. Colloque Int. CNRS 12, Paris, 1949.Google Scholar
  30. [28]
    Hurwitz, Uber die Komposition der quadratischen Formen. In Math. Werke II, p. 641; Math. Ann. 88 1–25 (1923).Google Scholar
  31. [29]
    S. Kobayashi, Imbeddings of homogenous spaces with minimum total curvature, Tohoku Math. J. 1963 - 70 (1967).MathSciNetMATHCrossRefGoogle Scholar
  32. [30]
    S. Kobayashi, Isometric imbeddings of compact spaces. Tohoku Math. J. 2021 - 25 (1968).MathSciNetMATHCrossRefGoogle Scholar
  33. [31]
    S. Kobayashi, and M. Takeuchi, Minimal imbeddings of R-spaces, J. Differential Geometry, 2, 230–215 (1968).MathSciNetGoogle Scholar
  34. [32]
    S. Kobayashi, and K. Nomizu, Foundations of Differential Geometry II. 1969, note 21, p. 361.Google Scholar
  35. [33]
    A. Kosinski, A theorem on Families of Acyclic Sets and its Applications. Pacific J. Math 12, 317 - 325 (1962).MathSciNetMATHGoogle Scholar
  36. [34]
    W. Kühnel, Total curvature of manifolds with boundary in E“. J. London Math Soc. (2) 15, 173 - 182 (1977).MATHCrossRefGoogle Scholar
  37. [35]
    W. Kühnel, Tight and 0-tight polyhedral embeddings of surfaces. Invent. Math. 58, 161 - 177 (1980).MathSciNetMATHCrossRefGoogle Scholar
  38. [36]
    N. H. Kuiper, Immersions with minimal total absolute curvature. In Coll. de Géométrie Diff, Centre Belge de Recherches Math., Bruxelles, 1958, pp. 75–88.Google Scholar
  39. [37]
    N. H. Kuiper, Sur les immersions a courbure totale minimale, In Seminaire de Topologie et Géométrie Différentielle Dirigé par Ch. Ehresmann, Faculte des Sciences, Paris, 1959, pp. 1–5.Google Scholar
  40. [38]
    N. H. Kuiper, La courbure d’indice ket les applications convexes. In Séminaire de Topologie et Géométrie Différentielle Dirigé par Ch. Ehresmann, Faculté des Sciences, Paris, 1960, pp. 1–15.Google Scholar
  41. [39]
    N. H. Kuiper, On surfaces in euclidean three space. Bull Soc. Math. Belg. 12, 5 - 12 (1960).MathSciNetMATHGoogle Scholar
  42. [40]
    N. H. Kuiper, Convex immersions of closed surfaces in E3, Comm. Math. Helv. 35, 85 - 92 (1961).MathSciNetMATHCrossRefGoogle Scholar
  43. [41]
    N. H. Kuiper, On convex maps. Nieuw Archief voor Wisk 10, 147 - 164 (1962).MathSciNetMATHGoogle Scholar
  44. [42]
    N. H. Kuiper, Der Satz von Gauss Bonnet fir Abbildungen im E N . Jahr. Ber. DMV. 69, 77 - 88 (1967).MathSciNetMATHGoogle Scholar
  45. [43]
    N. H. Kuiper, Minimal total absolute curvature for immersions. Invent. Math. 10, 209 - 238 (1970).MathSciNetCrossRefGoogle Scholar
  46. [44]
    N. H. Kuiper, Morse relations for curvature and tightness. In Proc. Liverpool Singularities Symp. II (C. T. C Wall, Ed.) Springer Lecture Notes in Mathematics 209, 1971, pp. 77–89.Google Scholar
  47. [45]
    N. H. Kuiper, Tight topological embeddings of the moebius band. J. Diff. Geometry 6, 271 - 283 (1972).MathSciNetMATHGoogle Scholar
  48. [46]
    N. H. Kuiper, Stable surfaces in euclidean three space. Math. Scand. 36, 83 - 96 (1975).MathSciNetMATHGoogle Scholar
  49. [47]
    N. H. Kuiper, and W. F. Pohl, Tight topological embeddings of the real projective plane in E5. Invent. Math. 42, 177 - 199 (1977).MathSciNetMATHCrossRefGoogle Scholar
  50. [48]
    N. H. Kuiper, Curvature measures for surfaces in E N. Lobachevski Colloquium. Kazan, USSR (1976).Google Scholar
  51. [49]
    R. C. Lacher, Cell-like maprings and their generalizations. Bull. AMS 83, 495 - 552 (1977).MathSciNetMATHCrossRefGoogle Scholar
  52. [50]
    R. Langevin and H. Rosenberg, On curvature integrals and knots. Topology 15, 405 - 416 (1976).MathSciNetMATHCrossRefGoogle Scholar
  53. [51]
    W. Lastufka, on TPP immersions. Thesis, Univ. of Minnesota, 1979.Google Scholar
  54. [52]
    J. A. Little and W. F. Pohl, On tight immersions of maximal codimension. Invent. Math. 13, 179 - 204 (1971).MathSciNetMATHCrossRefGoogle Scholar
  55. [53]
    B. Mazur, A note on some contractible 4-maniflods. Ann. of Math. (2) 73, 221–228 (1961).MathSciNetMATHGoogle Scholar
  56. [54]
    W. Meeks, Lectures on Plateau’s problem(July 1978), Escola de Geometria Differencial DO CEARA Brasil, 1979, 53 pp.Google Scholar
  57. [55]
    J. W. Milnor, On the total curvature of knots. Ann. of Math. 52(1950).Google Scholar
  58. [56]
    J. W. Milnor, On the total curvature of closed space curves. Math. Scand. 1, 289 - 296 (1953).MathSciNetMATHGoogle Scholar
  59. [57]
    J. W. Milnor, Morse Theory, Ann. Math. Stud. 51, Princeton, 1963.Google Scholar
  60. [58]
    J. D. Moore, Codimension two submanifolds of positive curvature. Proc. AMS 70, 72–78 (1978).MATHCrossRefGoogle Scholar
  61. [59]
    H. R. Morton, A criterion for an embedded surface in R 3 to be unkotted. preprint, Liverpool, 1976; in Proc. Conf. on Low Dimensional Topology, Sussex, 1977, to appear.Google Scholar
  62. [60]
    V. Poenaru, Les Décompositions de l’hypercube en produit topologique. Bull. Soc. Math. France113–129 (1960).Google Scholar
  63. [61]
    M. Retberg, Komplexe Mannigfaltigkeiten in einen euklidischen Raum. Diplomarbeit, Univ. Bielefeld, 1978.Google Scholar
  64. [62]
    G. Ringel, Map colour theorem. In Grundlehre der Math. Wiss., Band 209, Springer 1974.Google Scholar
  65. [63]
    I. L. Rodriguez, The two piece property and convexity for surfaces with boundary. J. Diff. Geometry 11, 235 - 250 (1976).MATHGoogle Scholar
  66. [64]
    L. C. Siebenmann, Approximating cellular maps by homeomorphisms. Topology II, 271 - 294 (1973).MathSciNetGoogle Scholar
  67. [65]
    E. Spanier, Algebraic Topology. McGraw-Hill, 1966.MATHGoogle Scholar
  68. [66]
    S. S. Tai, On the minimum imbeddings of compact symmetric spaces of rank one. J. Diff. Geom. 2, 55 - 66 (1968).MathSciNetMATHGoogle Scholar
  69. [67]
    Eberhard Teufel, Total krummung und totale Absolutkriimmung in der spharischen Differentialgeometrie und Differentialtopologie. Thesis, Stuttgart, 1979.Google Scholar
  70. [68]
    A. Weinstein, Positively curved n-manifolds in Rn+2. J. Diff. Geom. 4, l-4 (1970).MATHGoogle Scholar
  71. [69]
    T. J. Willmore, Tight immersions and total absolute curvature. Bull. London Math. Soc. 3, 129 - 151 (1971).MathSciNetMATHCrossRefGoogle Scholar
  72. [70]
    J. P. Wilson, The total absolute curvature of immersed manifolds. J. London Math. Soc. 40, 362 - 366 (1966).CrossRefGoogle Scholar
  73. [71]
    J. P. Wilson, Some minimal imbeddings of homogeneous spaces. J. London Math. Soc. 335–340 (1969).Google Scholar
  74. [72]
    P. Wintgen, Zur Integralkrimmung verknoteter Sphären, Thesis, Humboldt-Universität, Berlin, 1976.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Nicolaas H. Kuiper
    • 1
  1. 1.Institut des Hautes Etudes Scientifiques91 Bures-sur-YvetteFrance

Personalised recommendations