Advertisement

The Canonical Map for Certain Hilbert Modular Surfaces

Conference paper
  • 305 Downloads

Abstract

It was a great pleasure for me to participate in the symposium in honor of Shiing-shen Chern. In my lecture I intended to give a survey on Hilbert modular surfaces. But actually I discussed examples of such Hilbert modular surfaces for which specific information is available on their structure as algebraic surfaces. The paper presented here is an extended version of the talk.

Keywords

Double Cover Double Point Cusp Form Euler Number Algebraic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Beauville, L’application canonique pour les surfaces de type general. Inventiones Math. 55, 121–140 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Bombieri, Canonical maps of surfaces of general type. Publ. Math. IHES 42, 171–219 (1973).MathSciNetGoogle Scholar
  3. [3]
    E. Brieskom, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen. Math. Ann. 166, 76–102 (1966).MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Brieskom, Die Auflösung der rationalen Singuliaritäten holomorpher Abbildungen. Math. Ann. 178, 255–270 (1968).MathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Brieskom, Singular elements of semi-simple algebraic groups. In Actes, Congrès Intern. Math., 1970, Tome 2, pp. 279–284.Google Scholar
  6. [6]
    J. W. Bruce and C. T. C. Wall, On the classification of cubic surfaces. Preprint Liverpool 1978.Google Scholar
  7. [7]
    E. Freitag, Eine Bemerkung zur Theorie der Hilbertschen Modulmannigfaltigkeiten hoher Stufe. Math. Z. 171, 27–35 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. van der Geer, Hilbert modular forms for the field Q()g). Math. Ann. 233, 163–179 (1978).CrossRefzbMATHGoogle Scholar
  9. [9]
    G. van der Geer, Minimal models for Hilbert modular surfaces of principal congruence subgroups. Topology 18, 29–39 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. van der Geer and A. Van de Ven, On the minimality of certain Hilbert modular surfaces. In Complex Analysis and Algebraic Geometry. Iwanami Shoten and Cambridge U. P., 1977, pp. 137–150.CrossRefGoogle Scholar
  11. [11]
    G. van der Geer and D. Zagier, The Hilbert modular group for the field Q(4.5 - ). Inventiones Math. 42, 93–133 (1977).CrossRefzbMATHGoogle Scholar
  12. [12]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry. Wiley, New York, 1978.zbMATHGoogle Scholar
  13. [13]
    W. Hausmann, Kurven auf Hilbertschen Modulflächen. Dissertation, Bonn, 1979.Google Scholar
  14. [14]
    F. Hirzebruch, Topological Methods in Algebraic Geomery, 3rd ed. Springer, New York, 1966.Google Scholar
  15. [15]
    F. Hirzebruch, Hilbert modular surfaces. Ens. Math. 19, 183–281 (1973).MathSciNetzbMATHGoogle Scholar
  16. [16]
    F. Hirzebruch, Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe. Ann. Scient. Ec. Norm. Sup. 11, 101–166 (1978).MathSciNetzbMATHGoogle Scholar
  17. [17]
    F. Hirzebruch and A. Van de Ven, Hilbert modular surfaces and the classification of algebraic surfaces. Inventiones Math. 23, 1–29 (1974).CrossRefzbMATHGoogle Scholar
  18. [18]
    F. Hirzebruch and A. Van de Ven, Minimal Hilbert modular surfaces with pg = 3 and K2 = 2. Amer. J. Math. 101, 132–148 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Hirzebruch and D. Zagier, Classification of Hilbert modular surfaces. In Complex Analysis and Algebraic Geometry. Iwanami Shoten and Cambridge U. P., 1977, pp. 43–77.CrossRefGoogle Scholar
  20. [20]
    F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Inventiones Math. 36, 57–113 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Horikawa, On deformations of quintic surfaces. Inventiones Math. 31, 43–85 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Horikawa, Algebraic surfaces of general type with small C21. I. Annals Math. 104, 357–387 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Horikawa, Algebraic surfaces of general type with small c 21 II. Inventiones Math. 37, 121–155 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Horikawa, Algebraic surfaces of general type with small c 21. III. Inventions Math. 47, 209–248 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    E. Horikawa, Algebraic surfaces of general type with small c 21. IV. Inventiones Math. 50, 103–128 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    F. J. Koll, Die elliptischen Fixpunkte und die Spitzen der diskreten Erweiterungen der Hilbertschen Modulgruppe. Bonner Math. Schriften 84, 1976.Google Scholar
  27. [27]
    Yu. I. Manin, Cubic forms. Algebra, Geometry, Arithmetic. North-Holland, Amsterdam, 1974.Google Scholar
  28. [28]
    Y. Miyaoka, On the Chem numbers of surfaces of general type. Inventiones Math. 42, 225–237 (1977).MathSciNetzbMATHGoogle Scholar
  29. [29]
    L. Schläfli, On the distribution of surfaces of the third order into species. Phil. Trans. Roy. Soc. 153, 193–247 (1864).Google Scholar
  30. [30]
    O. V. Svareman, Simply-connectedness of the factor space of the Hilbert modular group (in Russian). Funct. Anal. and Appl. 8 (2) 99–100 (1974).CrossRefGoogle Scholar
  31. [31]
    H. Weber, Lehrbuch der Algebra, 2. Band, 2. Auflage. Vieweg, Braunschweig, 1899.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität53 BonnFederal Republic of Germany

Personalised recommendations