Skip to main content

Isometric Families of Kähler Structures

  • Conference paper

Abstract

The present study is motivated by the classical problem, loosely stated, of determining and describing, for any given family of complex analytic structures on a fixed, underlying real manifold, which subfamily consists of algebraic manifolds. This problem, which is probably inaccessible in its full generality, even when correctly stated with its missing qualifications, is treated here in a very restricted case, where each of the complex structures of the families under consideration admits a Kähler metric, such that the complex manifolds of the same family are isometric (though not complex analytically, in general). Clearly, this situation is highly restrictive compared to the general problem; however the information that one can extract from the two typical classes of such isometric families that can occur provides some interesting results on the global structure of some moduli spaces of nonalgebraic varieties, such as the K3-surfaces, the complex tori, and a special type of 2n-dimensional, rational affine variety.

Supported in part by NSF grant No. MCS 78-02285.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Alekseevskii, Classification of quatemionic spaces with transitive, solvable groups of motions. Inv. Akad. Nauk SSSR 39 (1975), A.M.S. Transl. 9, 297–339 (1975).

    MathSciNet  Google Scholar 

  2. M. F. Atiyah, Some Examples of Complex Manifolds. Bonner Mathematische Schriften, No. 6, Bonn, 1958.

    Google Scholar 

  3. T. Aubin, Equations du type Monge–Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978).

    MathSciNet  MATH  Google Scholar 

  4. M. Berger, Remarques sur les groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris Sér. A 262, 1316–1318 (1966).

    MATH  Google Scholar 

  5. R. B. Brown and A. Gray, Riemannian manifolds with holonomy group Spin(9), in Differential Geometry (Symposium in Honor of Kentaro Yano). Konokuniya, Tokyo, 1972, pp. 41–59.

    Google Scholar 

  6. F. A. Bogomolov, Hamiltonian Kähler manifolds. (in Russian), Dokl. Akad. Nauk SSSR 243 (5), 1101–1104 (1978).

    MathSciNet  Google Scholar 

  7. E. Calabi, Métriques kählériennes et fibrès holomorphes. Ann. Sci. Ec. Norm. Sup. Paris, 4me Sér. 12, 269–294 (1979).

    MathSciNet  Google Scholar 

  8. E. Horikawa, Surjectivity of the period map of K3 surfaces of degree 2. Math. Ann. 228, 113–146 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Kodaira and D. C. Spencer, On deformations of complex structures, II. Ann. Math. 67 (1958), esp. pp. 403–408.

    Article  MathSciNet  Google Scholar 

  10. V. Kulikov, Epimorphicity of the period mapping for K3 surfaces. (in Russian) Usp. Mat. Nauk 32, (4; 196), 257–258 (1977).

    MathSciNet  MATH  Google Scholar 

  11. V. Kulikov, Degeneration of K3 surfaces and Enriques surfaces. Izv. Akad. Nauk SSSR 41, 1008–1042 (1977); AMS Transi. 11, 957–989 (1977).

    MATH  Google Scholar 

  12. A. Lichnérowicz, Théorie Globale des Connexions et des Groupes d’Holonomie. Rome, Cremonese, 1955, esp. pp. 250–251.

    Google Scholar 

  13. A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391–404 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. N. Todorov, Moduli of kählerian K-3 surfaces. Mathematische Arbeitstagung, Bonn, 1979.

    Google Scholar 

  15. A. Weil, Théorèmes fondamentaux de la théorie des fonctions thêta (d’après des mémoires de Poincaré et Frobenius), in Sem. Bourbaki, No. 16, Mai 1949; Oeuvres scientifiques—Collected papers. Springer, New York, Heidelberg, New York, 1979, I, pp. 414–421.

    Google Scholar 

  16. S. T. Yau, On the Ricci curvature of compact Kähler manifolds and complex Monge–Ampère equations, I. Comm. Pure Appl. Math. 31, 339–411 (1978).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag New York Inc.

About this paper

Cite this paper

Calabi, E. (1980). Isometric Families of Kähler Structures. In: Hsiang, WY., Kobayashi, S., Singer, I.M., Wolf, J., Wu, HH., Weinstein, A. (eds) The Chern Symposium 1979. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8109-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8109-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8111-2

  • Online ISBN: 978-1-4613-8109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics