Structure and Function of the Avian Ear

  • Nozomu Saito
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


There is much behavioral and neurophysiological data on the auditory system of members of the class Ave but considerably less data regarding the structure and function of their receptor organs. The auditory discrimination capacities of avian species and their responses to “biologically relevant” sounds have been worked out in considerable detail. The audibility curves of the passerines and nonpasserines fall close to those of man (Dooling, Chapter 9; Dooling 1975b), while pigeons are now known to be sensitive to infrasound (Yodlowski, Kreithen, and Keeton 1977). The vocal frequency range of song birds tends to exceed the highest best frequency response of auditory neurons (Konishi 1969, Sachs and Simmott 1978). The response of the pigeon’s auditory neuron does not appear to be qualitatively different from those of the mammal’s (Sachs, Lewis, and Young 1974, Sachs, Woolf, and Sinnott, Chapter 11). Song birds are particularly interesting since they tend to respond to “biologically relevant” sounds (Dooling 1978, Leppelsack 1978, Scheich 1977) and also share with man an aptitude for vocal learning (Bullock 1977, Nottebohm, Konishi, Hillyard, and Marler 1972, Karten 1968, Konishi 1963).


Hair Cell Tympanic Membrane Basilar Membrane Efferent Fiber Endocochlear Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullock, T. H. (ed.): Life Science Report 5, Dahlem Konferenzen, Berlin (1977).Google Scholar
  2. Davis, H.: Biophysics and physiology of the inner ear. Physiol. Rev. 37, 1–49 (1957).PubMedGoogle Scholar
  3. Dohlman, G. F.: Histochemical studies of vestibular mechanisms. In: Neural Mechanisms of the Auditory and Vestibular Systems. Rasmussen, G. L. et al. (eds.). Thomas (1960).Google Scholar
  4. Dooling, R. J., Saunders, J. C.: Hearing in the parakeet (Melopsittacus undulatus): Absolute thresholds, critical ratios, frequency difference limens, and vocalizations. J. Comp. Physiol. Psych. 88, 1–20 (1975a).CrossRefGoogle Scholar
  5. Dooling, R. J., Saunders, J. C.: Auditory intensity discrimination in the parakeet CMelopsittacus undulatus). J. Acoust. Soc. Am. 58, 1308–1310 (1975b).PubMedCrossRefGoogle Scholar
  6. Dooling, R. J., Zoloth, S., Baylis, J.: Auditory sensitivity, equal loudness, temporal resolving power and vocalizations in the house finch (Carpodacus mexicanus). J. Comp. Physiol. Psych. 92, 867–876 (1978).CrossRefGoogle Scholar
  7. Gates, G. R., Perry, D. R., Coles, R. B.: Cochlear microphonics in the adult domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. 51 A, 251–252 (1975).CrossRefGoogle Scholar
  8. Guinan, J. J., Jr., Peake, W. T.: Middle-ear characteristics of anaesthetized cats. J. Acoust. Soc. Am. 41, 1237–1261 (1967).PubMedCrossRefGoogle Scholar
  9. Hensen, O. W.: Comparative anatomy of the middle ear. In: Handbook of Sensory Physiology, Vol. 1. Keidel, W. D., Neff, W. D. (eds.). Springer-Verlag, pp. 39– 110(1974).Google Scholar
  10. Jahnke, P. G. L., Lundquist, P.-G., Wersäll, J.: Some morphological aspects of sound perception in birds. Acta Oto-laryng. 67, 583–601 (1969).CrossRefGoogle Scholar
  11. Kartashev, N. N., Ilyichev, V. D.: Über das Gehörorgan der Alkenvögel. J. Ornithol. 105, 113–136(1964).CrossRefGoogle Scholar
  12. Karten, H. J.: The ascending auditory pathway in the pigeon (Columba livia). II, Tele- cephalic projections of the nucleus ovoidalis thalami. Brain Res. 11, 134–153 (1968).PubMedCrossRefGoogle Scholar
  13. Konishi, M.: The role of auditory feedback in the vocal behavior of the domestic fowl. Zeitschrf. Tierphsychol. 20, 349–367 (1963).Google Scholar
  14. Konishi, M.: Hearing, single unit analysis, and vocalizations in songbirds. Science 166, 1178–1181 (1969).PubMedCrossRefGoogle Scholar
  15. Kuijpers, W., Houben, N. M. D., Bonting, S. L.: Distribution and properties of ATPase activities in the cochlea of the chicken. Comp. Biochem. Physiol. 36, 669–676(1970).CrossRefGoogle Scholar
  16. Kurokawa, N.: The ultrastructure of the basilar papilla of the chick. J. Comp. Neur. 181,361–364(1978).CrossRefGoogle Scholar
  17. Leppelsack, H. J.: Unit responses to species-specific sounds in the auditory forebrain center of birds. In: Auditory Processing and Animal Sound Communication (symp. 1977). Proc. Fed. 37, No. 10, 2336–2341 (1978).Google Scholar
  18. Necker, R.: Zur Entstehung der Cochlea-potentiale von Vögeln: Verhalten bei 02- Mangel, Cyanidvergiftung und Unterkühlung sowie Beobachtungen über die räumliche Verteilung. Z. vergl. Physiol. 69, 367–425 (1970).CrossRefGoogle Scholar
  19. Norberg, A.: Physical factors in directional hearing in Aegolius funereus (Linne) (Strigiformes), with special reference to the significance of the asymmetry of the external ears. Ark. Zool. 22, 181–204 (1968).Google Scholar
  20. Nottebohm, F., Konishi, M., Hillyard, S., Marler, P.: Ontogeny of acoustic behavior. In: Auditory Processing of Biologically Significant Sounds. Worden, F. G. et al. (eds.). Neurosciences Res. Prog. Bull. 10, 31–49 (1972).Google Scholar
  21. Payne, R. S.: Acoustic localization of prey by barn owls (Tyto alba). J. Exp. Biol. 54,535–573 (1971).PubMedGoogle Scholar
  22. Pumphrey, R. J.: Sensory organs. In: Biology and Comparative Physiology of Birds. Marshall, A. J. (ed.). 2, 69–86 (1961).Google Scholar
  23. Rosowski, J. J.: Acoustic properties of the interaural pathway in the chicken. J. Acoust. Soc. Am. 61, S3 (A) (1977).CrossRefGoogle Scholar
  24. Rosowski, J. J., Saunders, J. C.: Phase interactions resulting from the avian interaural pathway. J. Acoust. Soc. Am. 62, Suppl. 1, 586 (1977).CrossRefGoogle Scholar
  25. Sachs, M. B., Lewis, R. H., Young, E. D.: Discharge patterns of single fibers in the pigeon auditory nerve. Brain Res. 70, 431–447 (1974).PubMedCrossRefGoogle Scholar
  26. Sachs, M. B., Sinnott, J. M.: Responses to tones of single cells in nucleus magnocel- lularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J. Comp. Physiol. 126, 347–361 (1978).CrossRefGoogle Scholar
  27. Saunders, J. C., Johnstone, B. M.: A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryng. 73, 353–361 (1972).PubMedCrossRefGoogle Scholar
  28. Scheich, H.: Central processing of complex sounds and feature analysis. In: Life Science Report 5, Dahlem Konferenzen, Berlin, 161–182 (1977).Google Scholar
  29. Schmidt, R. S., Fernández, C.: Labyrinthine DC potentials in representative vertebrates. J. Cell. Comp. Physiol. 59, 331–322 (1962).CrossRefGoogle Scholar
  30. Schwartzkopff, J.: Unterschungen über die Arbeitsweise des Mittelohres und Rich- tungsgehören der Singvögel unter Verwendung von Cochlea—Potentialen. Z. vergl. Physiol. 34, 46–68 (1952).CrossRefGoogle Scholar
  31. Schwartzkopff, J.: Mechanoreception. In: Avian Biology 3. Farner, D. S. et al. (eds.). Academic Press, 417–477 (1973).Google Scholar
  32. Schwartzkopff, J.: Inner ear potentials in lower vertebrates: dependence on metabolism. In: Basic Mechanism in Hearing. Malier, A., Boston, P. (eds.). Academic Press, 423–452(1973).Google Scholar
  33. Smith, C. A., Takasaka, T.: Auditory receptor organs of reptiles, birds and mammals. In: Contribution to Sensory Physiology (V). Neff, W. D. (ed.). Academic Press, 129–178 (1971).Google Scholar
  34. Stellbogen, E.: Uber das äussere und mittelere Ohr des Waldkauzes. Z. Morphol. Oekol. Tiere. 19, 686–731 (1930).CrossRefGoogle Scholar
  35. Takasaka, T., Smith, C. A.: The structure and innervation of the pigeon’s basilar papilla. J. Ultrastruct. Res. 35, 20–65 (1971).PubMedCrossRefGoogle Scholar
  36. Tanaka, K., Smith, C. A.: Structure of avian tectorial membrane. Anal. Oto-Rhin- Laryng. 84,287–296(1975).Google Scholar
  37. Tanaka, K., Smith, C. A.: Structure of the chicken’s inner ear: SEM and TEM study. Am. J. Anat. 153, 251–272 (1978).PubMedCrossRefGoogle Scholar
  38. von Bekesy, G.: Uber die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akust. Zeits. 6, 1–16 (1941).Google Scholar
  39. von Bekesy, G.: Uber die mechanishe Frequenzanalyse in der Schnecke verschiedener Tiere. Akust. Zeits. 9,3–11 (1944).Google Scholar
  40. von Bekesy, G.: The variation of phase along the basilar membrane with sinusoidal vibrations. J. Acoust. Soc. Amer. 19, 452–460 (1947).CrossRefGoogle Scholar
  41. von Bekesy, G.: DC potential and energy balance of the cochlear partition. J. Acoust. Soc. Am. 23,576–582 (1951).CrossRefGoogle Scholar
  42. von Bekesy, G.: Description of some mechanical properties of the organ of Corti. J. Acoust. Soc. Am. 25, 770–785 (1953).CrossRefGoogle Scholar
  43. Wada, Y.: Beiträge zur vergleichenden Physiologie des Gehörorgans. Pflügers Arch. Gesamte Physiol. Menschen Tiere. 202, 46–69 (1924).CrossRefGoogle Scholar
  44. Yodlowski, M. L., Kreithen, M. L., Keeton, W. T.: Detection of atmospheric infrasound by homing pigeons. Nature 265, 725–726 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Nozomu Saito
    • 1
  1. 1.Department of PhysiologyDokkyo University School of MedicineMibu, TochigiJapan

Personalised recommendations