Advertisement

Max-Min Problems

  • Richard M. Meyer
Part of the Universitext book series (UTX)

Abstract

A problem frequently encountered in Applied Mathematics is that of finding the maximum or minimum of a real valued function f(xl,…,xn) of n real variables, where the variables (xl,…,xn) are constrained to lie in some subset C of En.1 Depending upon the nature of f and the manner in which the subset C is specified, there are various techniques for solving the above problem.

Keywords

Lagrange Equation Tangent Line Relative Maximum Side Condition Relative Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Additional and Related Material: Section 19

  1. 1.
    Bazaraa, M. and C. Shetty, “Foundations of Optimization”, Springer-Verlag, New York (1976).MATHGoogle Scholar
  2. 2.
    Berman, Al, “Cones, Matrices and Mathematical Programming”, Springer-Verlag, New York (1973).MATHGoogle Scholar
  3. 3.
    Brent, R., “Algorithms for Minimization Without Derivatives”, Prentice-Hall, Inc. (1973).MATHGoogle Scholar
  4. 4.
    Collantz, L. and W. Wetterling, “Optimization Problems”, Springer-Verlag, New York (1975).Google Scholar
  5. 5.
    Cooper, L. and D. Steinberg, “Methods of Optimization”, W. B. Saunders Co., Philadelphia (1970).MATHGoogle Scholar
  6. 6.
    Daneø, S., “Linear Programming in Industry”, Springer-Verlag, New York (1974).Google Scholar
  7. 7.
    Danø, S., “Non-Linear and Dynamic Programming”, Springer-Verlag, New York (1975).Google Scholar
  8. 8.
    Dantzig, G., “Linear Programming and Extensions”, Princeton University Press (1963).MATHGoogle Scholar
  9. 9.
    Demyanov, V. and R. Rubinov, “Approximate Methods in Optimization Problems”, American Elsevier Publishing Co. (1970).Google Scholar
  10. 10.
    El-Hodiri, M., “Constrained Extrema: Introduction to the Differential Case with Economic Applications”, Springer-Verlag, New York (1971).Google Scholar
  11. 11.
    Gillespie, R., “Partial Differentiation”, Oliver and Boyd, Ltd. (1951).MATHGoogle Scholar
  12. 12.
    Hancock, H., “Theory of Maxima and Minima”, Dover Publications, Inc. (1974).Google Scholar
  13. 13.
    Hestenes, M., “Optimization Theory: the Finite Dimensional Case”, Dover Publications, Inc. (1975).MATHGoogle Scholar
  14. 14.
    Kaplan, W., “Advanced Calculus”, Addison-Wesley, Inc. (1952).MATHGoogle Scholar
  15. 15.
    Koo, D., “Elements of Optimization”, Springer-Verlag, New York (1978)Google Scholar
  16. 16.
    Kowalik, J., “Methods for Uncontrained Optimization Problems”, American Elsevier Publishing Co. (1968).Google Scholar
  17. 17.
    Reinfeld, N. and W. Vogel, “Mathematical Programming”, Prentice-Hall, Inc. (1958).Google Scholar
  18. 18.
    Spiegel, M., “Schaum’s Outline of Theory and Problems of Advanced Calculus”, Schaum Publishing Co. (1963).Google Scholar
  19. 19.
    Spivey, W. and R. Thrall, “Linear Optimization”, Holt, Reinhart and Winston, Inc. (1970).MATHGoogle Scholar
  20. 20.
    Zukhovitskiy, S. and L. Avdeyeva, “Linear and Convex Programming”, W. B. Saunders, Inc. (1966).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Richard M. Meyer
    • 1
  1. 1.Niagara University, College of Arts and SciencesNiagara UniversityUSA

Personalised recommendations