Influence of Exercise on Electron Transport Capacity of Heart Mitochondria

  • Hans Kraus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 11)


The ability of mammalian organisms to maintain homeostasis depends on their capacity to alter the rate of the metabolic events which underlie the physiological processes at molecular level. Since metabolic reactions are mediated by enzyme systems, an elucidation of the factors which regulate cellular enzyme activity is essential in understanding the ability of the organism to adapt and maintain a dynamic equilibrium (19).


Dehydrogenase Activity Heart Mitochondrion Flight Muscle Succinate Dehydrogenase Activity Heart Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALDINGER, E.E. Effect of thiamine deficiency on potential myocardial contractility. Circulat. Res. 16: 238, 1965.PubMedGoogle Scholar
  2. 2.
    BING, J.R. Cardiac metabolism. Physiol. Rev. 45: 171, 1965.PubMedGoogle Scholar
  3. 3.
    DORST, P. Hydrogen transport and transport metabolites. Funktionelle und morphologische Organisation der Zelle. Rottach-Egern: Springer-Verlag, 1963.Google Scholar
  4. 4.
    BUCHER, TH., and M. LINGENBERG. Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chemie. 70: 552, 1958.CrossRefGoogle Scholar
  5. 5.
    BUTOW, R.A., and E. RACKER. On the mechanism of respiratory control. J. Gen. Physiol. 9: l49, 1965.Google Scholar
  6. 6.
    ESTABROOK, B.W., and B. SACKTOR. Alphaglycerophosphate oxidase of flight muscle mitochondria. J. Biol. Chem. 223: 1014, 1958.Google Scholar
  7. 7.
    GOLLNICK, P.D., and G.E. HEARN. Lactic dehydrogenase activities of heart and skeletal muscle of exercised rats. Amer. J. Physiol. 201: 691, 1961.Google Scholar
  8. 8.
    HEARN, G.E., and W. WAINIO. Succinic dehydrogenase activity of heart and skeletal muscle of exercised rats. Amer. J. Physiol. 185: 348, 1956.PubMedGoogle Scholar
  9. 9.
    HOLLOSZY, J.O. Biochemical adaptions in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278, 1967.PubMedGoogle Scholar
  10. 10.
    ISAACS, H.G., B. SACKTOR, AND T.A. MURPHY. The role of the α-glycerophosphate cycle in the control of carbohydrate oxidation in heart and in the mechanism of action of thyroid hormone. Biochim. Biophys. Acta 177: 196, 1969.PubMedCrossRefGoogle Scholar
  11. 11.
    KADENBACH, B. Der Einfluss von Thyreoidhormonen in vivo auf die oxydative Phosphorylierung und Enzymaktivitäten in Mitochondrien. Biochem. Z. 344: 49, 1966.Google Scholar
  12. 12.
    KEUL, J., E. DOLL, H. STEIM, U. FLEER, UND H. REINDELL. Über den Stoffwechsel des Herzen bei Hochleistungssportlern. Z. Kreisl.-Forsch. 55: 1477, 1966.Google Scholar
  13. 13.
    KRAUS, H., R. KIRSTEN, UND J.R. WOLFF. Die Wirkung von Schwimmund Lauftraining auf die celluläre Funktion und Struktur des Muskels. Pflüg. Arch. ges. Physiol. 308: 57, 1969.CrossRefGoogle Scholar
  14. 14.
    LAGUENS, R.P., B.B. LAZADA, AND C.L. GOMEZ-DUNM. Effect of acute and exhaustive exercise upon the fine structure of heart mitochondria. Experientia. 22: 224, 1966.CrossRefGoogle Scholar
  15. 15.
    LEHNINGER, A.L. Phosphorylation coupled to oxidation of diphosphopyridine nucleotide. J. Biol. Chem. 190: 345, 1951.PubMedGoogle Scholar
  16. 16.
    ROODYN, D.B. The mitochondrion. In: Enzyme Cytology. New York: Academic Press, 1967, p. 103.Google Scholar
  17. 17.
    SACKTOR, B. The role of mitochondria in respiratory metabolism of flight muscle. Ann. Rev. Entomol. 6: 103, 1961.CrossRefGoogle Scholar
  18. 18.
    SACKTOR, B., AND A.R. DICK. Oxidation of extramitochondrial diphosphopyridine nucleotide by various tissues of the mouse. Science l15: 606, 1964.CrossRefGoogle Scholar
  19. 19.
    WEBER, G., S.K. SRIVASTAVA, AND B. L. SINGHAL. Role of enzymes in homeostasis. J. Biol. Chem. 210: 750, 1965.Google Scholar
  20. 20.
    WILLIAMSON, J.R. Effects of insulin and diet on the metabolism of L (+) lactate and glucose in the perfused rat heart. Biochem. J. 83: 377, 1962.PubMedGoogle Scholar
  21. 21.
    WILLIAMSON, J.R. Effects of insulin and starvation on the metabolism of acetate and pyruvate by the perfused rat heart. Biochem. J. 93: 97, l961.Google Scholar
  22. 22.
    YAMPOLSKAYA, L.J. Biochemical changes in the muscle of trained and untrained animals under the influence of small loads. Sechenow J. Physiol. U.S.S.R. 39: 91, 1952.Google Scholar
  23. 23.
    YAMPOLSKAYA, L. J., AND N.N. YAKOVLEV. The influence of muscle activity on muscle proteins. Sechenow J. Physiol. U.S.S.R. 37: 110, 1951.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Hans Kraus
    • 1
  1. 1.University Pediatric DepartmentGöttingenGermany

Personalised recommendations