Skip to main content

Influence of Intensity and Duration of Exercise on Supply and Use of Fuels

  • Chapter
Muscle Metabolism During Exercise

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 11))

Abstract

In mobile animals, survival may depend upon ability to perform muscular work, often during periods of limited food supply. This work may be of high intensity, of long duration, or, occasionally, both. It is to be expected, therefore, that adaptations to meet these varying demands have developed. Because of the large energy requirements of the active as opposed to the resting state, these adaptations should include mechanisms to assure an adequate supply of fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weis-Fogh, T. Fat combustion and metabolic rate of flying locusts. Royal Soc. of London (Phil. Trans.) Series B 237:1, 1952.

    Article  CAS  Google Scholar 

  2. Drummond, G. I. and Black, E.C. Comparative physiology: fuel of muscle metabolism. Ann. Rev. Physiol. 22:169, 1960.

    Article  CAS  Google Scholar 

  3. George, J. C. and Berger, A.J. Avian Myology. Academic Press, New York. 1966.

    Google Scholar 

  4. Gauthier, G.F. and Padykula, H.A. Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. J. Cell. Biol. 28:333, 1966.

    Article  PubMed  CAS  Google Scholar 

  5. Romanul, F. C.A. Capillary supply and metabolism of muscle fibers. Arch. Neurol. 12:497, 1965.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon, M.S. Oxygen consumption of red and white muscles from tuna fishes. Science 159:87, 1968.

    Article  Google Scholar 

  7. Bilinski, E. Utilization of lipids by fish. I. Fatty acid oxidation by tissue slices from dark and white muscle of rainbow trout(Salmo Gairdnerii). Can. J. Biochem. Physiol. 41:107, 1963.

    Article  PubMed  CAS  Google Scholar 

  8. George, J.C. and Jyoti, D. The lipid content and its reduction in the muscle and liver during long and sustained muscular activity. J. Animal Morphol. Physiol. 2:37, 1955.

    Google Scholar 

  9. Romanul, F.C.A. and Van Der Meulen, J.P. Slow and fast muscles after cross innervation. Arch. Neurol. 17:387, 1967.

    Article  PubMed  CAS  Google Scholar 

  10. Edström, L. and Kugelberg, E. Histochemical composition, distribution of fibres and fatiguability of single motor units. J. Neurol. Neurosurg. Psychiat. 31:424, 1968.

    Article  PubMed  Google Scholar 

  11. Stubbs, S. St.G. and Blanchaer, M.C. Glycogen phosphorylase and glycogen synthetase activity in red and white skeletal muscle of the guinea pig. Can. J. Biochem. 43:463, 1965.

    PubMed  CAS  Google Scholar 

  12. Kugelberg, E. and Edström L. Differential histochemical effects of muscle contractions on phosphorylase and glycogen in various types of fibres: relation to fatigue. J. Neurol. Neurosurg. Psychiat. 31:405, 1968.

    Article  Google Scholar 

  13. Grimby, L. and Hannerz, J. Recruitment order of motor units on voluntary contraction: changes induced by proprioceptive afferent activity. J. Neurol. Neurosurg. Psychiat. 31:565, 1968.

    Article  PubMed  CAS  Google Scholar 

  14. Havel, R.J., Pernow, B. and Jones, N.L. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J. Appl. Physiol. 23:90, 1967.

    PubMed  CAS  Google Scholar 

  15. Havel, R.J., Ekelund, L-G. and Holmgren, A. Kinetic analysis of the oxidation of palmitate-1-14C in man during prolonged heavy muscular exercise. J. Lipid Res. 8:366, 1967.

    PubMed  CAS  Google Scholar 

  16. Jones, N.L. and Havel, R.J. Metabolism of free fatty acids and chylomicron triglycerides during exercise in rats. Am. J. Physiol. 213:824, 1967.

    PubMed  CAS  Google Scholar 

  17. Havel, R.J. Lipid as an energy source. Chap. 29. In: Physiology and Biochemistry of Muscle as a Food. (E.J. Briskey, ed.). Univ. of Wisconsin Press. In press. 1970.

    Google Scholar 

  18. Havel, R.J., Naimark, A. and Borchgrevink, C.F. Turnover rate and oxidation of free fatty acids of blood plasma in man exercise: studies during continuous infusion of palmitate-1-C14. J. Clin. Invest. 42:1054, 1963.

    Article  PubMed  CAS  Google Scholar 

  19. Havel, R.J., Carlson, L. A., Ekelund, L-G. and Holmgren, A. Turnover rate and oxidation of different free fatty acids in man during exercise. J. Appl. Physiol. 19:613, 1964.

    PubMed  CAS  Google Scholar 

  20. Havel, R.J. The fuels for muscular exercise. In: Science and Medicine of Exercise and Sport. (W.R. Johnson and E.R. Buskirk, eds.) Harper and Bros. In press.

    Google Scholar 

  21. Hartog, M., Havel, R.J., Copinschi, G., Earll, J.M. and Ritchie, B.C. The relationship between changes in serum levels of growth hormone and mobilization of fat during exercise in man. Quart. J. Exp. Physiol. 52:86, 1967.

    CAS  Google Scholar 

  22. Blackard, W.G. and Heidingsfelder, S.A. Adrenergic receptor control mechanism for growth hormone secretion. J. Clin. Invest. 47:1407, 1968.

    Article  PubMed  CAS  Google Scholar 

  23. Imura, H., Kato, Y., Ikeda, M. and Morimoto, M. Increased plasma levels of growth hormone during infusion of propranolol. J. Clin. Endocr. Metab. 28:1079, 1968.

    Article  PubMed  CAS  Google Scholar 

  24. Hunter, W.M. and Sukkar, M.Y. Changes in plasma insulin levels during muscular exercise. J. Physiol. l96:110p, 1968.

    Google Scholar 

  25. Pruett, E.D.R. Glucose and insulin during prolonged work stress in men living on different diets. J. Appl. Physiol. 28:199, 1970.

    PubMed  CAS  Google Scholar 

  26. Rasio, E., Malaisse, W., Franckson, J.R.M. and Conard, V. Serum insulin during acute muscular exercise in normal man. Arch. int. Pharmacodyn. 160:485, 1966.

    PubMed  CAS  Google Scholar 

  27. Earll, J.M., Copinschi, G., Hartog, M., and Havel, R.J. Serum levels of insulin during prolonged exercise in man. Clin. Res. 15: 109, 1967.

    Google Scholar 

  28. Nikkilä, E.A., Taskinen, M-R., Miettinen, T.A., Pelkonen, R. and Poppius, H. Effect of muscular exercise on insulin secretion. Diabetes 17:209, 1968.

    PubMed  Google Scholar 

  29. Carlström, S. and Karlefors, T. Studies on fatty acid metabolism in diabetics during exercise. Acta. Med. Scand. 181:747, 1967.

    Article  PubMed  Google Scholar 

  30. Young, D.R., Pelligra, R., Shapira, J., Adachi, R.R. and Skrettingland, K. Glucose oxidation and replacement during prolonged exercise in man. J. Appl. Physiol. 23:734, 1967.

    PubMed  CAS  Google Scholar 

  31. Hultman, E. Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab. Invest. 19, suppl. 94:7, 1967.

    Google Scholar 

  32. Shimazu, T. and Fukuda, A. Increased activities of glycogenolytic enzymes in liver after splanchnic-nerve stimulation. Science 150: 1607, 1965.

    Article  PubMed  CAS  Google Scholar 

  33. Andres, R., Cader, G. and Zierler, K. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J. Clin. Invest. 35:671, 1956.

    Article  PubMed  CAS  Google Scholar 

  34. Zierler, K.L., Maseri, A., Klassen, G., Rabinowitz, D. and Burgess, J. Muscle metabolism during exercise in man. In: Trans. Ass. Amer. Phys. 81:266, 1968.

    CAS  Google Scholar 

  35. Havel, R.J., Segel, N. and Balasse, E.O. Effect of 5-methylpyrazole-3-carboxylic acid (MPCA) on fat mobilization, ketogenesis and glucose metabolism during exercise in man. In: Drugs Affecting Lipid Metabolism, p. 105. Plenum Press. 1969.

    Google Scholar 

  36. London, D.R. and Foley, T.H. Evidence for the release of individual amino acids from the resting human forearm. Nature 208:588, 1965.

    Article  CAS  Google Scholar 

  37. Pozefsky, T., Felig, P., Tobin, J.D., Soeldner, J.S. and Cahill, G. F. Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. CIin. Invest. 48:2273, 1969.

    Article  CAS  Google Scholar 

  38. Felig, P. and Wahren, J. Evidence for a glucose-alanine cycle: amino acid metabolism during muscular exercise. J. Clin. Invest. 49:28a, 1970.

    Google Scholar 

  39. Pernow, B., Havel, R.J. and Jennings, D.B. The second wind phenomenon in McArdle’s syndrome. Acta Med. Scand. Suppl. 472:294, 1967.

    PubMed  CAS  Google Scholar 

  40. Pernow, B. and Wahren, J. Lactate and pyruvate formation and oxygen utilization in the human forearm muscles during work of high intensity and varying duration. Acta. Physiol. Scand. 56:267, 1962.

    Article  PubMed  CAS  Google Scholar 

  41. Jorfeldt, L. Metabolism of L (+)-lactate in human skeletal muscle during exercise. Acta Physiol. Scand. Suppl. 338:5, 1970.

    Google Scholar 

  42. Fröberg, O. Determination of muscle lipids. Biochim. Biophys. Acta 144:83, 1967.

    Google Scholar 

  43. Young, D.R., Pelligra, R. and Adachi, R.R. Serum glucose and free fatty acids in man during prolonged exercise. J. Appl. Physiol. 21:1047, 1966.

    PubMed  CAS  Google Scholar 

  44. Hagenfeldt, L. and Wahren, J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand. J. Clin. Lab. Invest. 21:263, 1968.

    Article  PubMed  CAS  Google Scholar 

  45. Carlson, L. A., Havel, R. J., Ekelund, L-G. and Holmgren, A. Effect of nicotinic acid on the turnover rate and oxidation of the free fatty acids of plasma in man during exercise. Metabolism 12:837, 1963.

    PubMed  CAS  Google Scholar 

  46. Bergström J., Hultman, E., Jorfeldt, L., Pernow, B. and Wahren, J. Effect of nicotinic acid on physical working capacity and on metabolism of muscle glycogen in man. J. Appl. Physiol. 26:170, 1969.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Havel, R.J. (1971). Influence of Intensity and Duration of Exercise on Supply and Use of Fuels. In: Pernow, B., Saltin, B. (eds) Muscle Metabolism During Exercise. Advances in Experimental Medicine and Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4609-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4609-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4611-1

  • Online ISBN: 978-1-4613-4609-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics