Skip to main content

Uptake of Substrates in Isolated Contracting Slow and Fast Muscles in Situ in Relation to Fatigue

  • Chapter
Muscle Metabolism During Exercise

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 11))

Abstract

Although it has been established that carbohydrates are not the only energy source in skeletal muscle (Andres et al., 1956; Havel, et al., 1963; Bass & Hudlicka, 1964; Paul, 1970) it appears that a large part of energy supply for the performance of work is derived from the breakdown of glycogen (see e.g. Ahlborg et al., 1967; Corsi et al., 1969). In a dog gastrocnemius muscle glycogen is used mainly during the first 10–15 mm of rhythmic contractions (Hirche et al., 1970) at which time the work performed by this muscle is diminishing. An early onset of fatigue has been described in fast muscles (see e.g. del Pozo, 1942; Eberstein & Sandow, 1963) which have a high content of glycogen, while slow muscles where the content of glycogen is lower can work for a long time without signs of fatigue (Kugelberg & Edström, 1968; Edstr8m & Kugelberg, 1968). In order to elucidate these discrepancies consumpf ion of some substrates has been followed in isolated cat soleus (slow) and gastrocnemius (mainly fast) muscles in situ measuring the blood flow and A-V differences while the muscles have been performing isotonic contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlborg, B., Bergström, J., Ekelund, L. G., Hultman, E. Muscle glycogen and muscle electrolytes during prolonged exercise. Acta physiol. scand. 70: 122–142, 1967.

    Article  Google Scholar 

  • Andres, R., Cader, G., Zierler, K. L. The quantitative minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. J. clin. Invest. 35: 671–682, 1956.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A., Hudlicka, O. Interrelations between metabolism and blood flow in normal and denervated dog gastrocnemius muscle at rest and during stimulation. Physiol. bohemoslov., 13: 48–61, 1964.

    PubMed  CAS  Google Scholar 

  • Bergström, J. Local changes of ATP and phospocreatine in human muscle tissue in connection with exercise. Circul. Res. Suppl. I vo. XX, 1–91–96, 1967.

    Google Scholar 

  • Bergström, J. Hultman, E. The effect of exercise an muscle glycogen and electrolytes in normals. Scand. J. Clin. Lab. Invest 18: 16–20, 1966.

    Article  PubMed  Google Scholar 

  • Bocek, R. M., Peterson, R. D., Beatty, C. H. Glycogen metabolism in red and white muscle. Amer. J. Physiol. 210: 1101–1107, 1966.

    PubMed  CAS  Google Scholar 

  • Cohn, F., Ueber den Einfluss der Muskelarbeit auf den Lactacidogengehalt in den roten und weissen Muskulatur des Kaninchens. Ztschr. f. physiol. Chemie, 113: 253–262, 1921.

    CAS  Google Scholar 

  • Corsi, A., Midrio, M., Granata, A. L. In situ utilization of glycogen and blood glucose by skeletal muscle during tetanus. Amer. J. Physiol. 216: 1534–1541, 1969.

    PubMed  CAS  Google Scholar 

  • Edström, L., Kugelberg, E. Histochemical composition, distribution of fibres and fatiguability of single motor units. J. Neurol, Neurosurg, Psychiat. 31: 424–433, 1968.

    Article  Google Scholar 

  • Eberstein, A., Sandow, A. Fatigue mechanisms in muscle fibres. In: Effect of Use and Disuse on Neuromuscular Functions, ed. E. Gutmann & P. Hnik, Prague, p. 515–526, 1963.

    Google Scholar 

  • George, J. C., Vallyathan, N. V. Effect of exercise on the free fatty acid levels in the pigeon. J. Appl. Physiol. 19: 619–622, 1964.

    PubMed  CAS  Google Scholar 

  • Havel, R. J., Naumark, A., Borchgrevink, C. F. Turnover rate and oxidation of free fatty acid of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J. clin. Invest. 42: 1054–1063, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Hilton, S. M., Vrbova, G. Absence of functional hyperaemia in the soleus muscle of the cat. J. Physiol., 194: 86P, 1968.

    Google Scholar 

  • Hilton, S. M., Vrbova, G. Inorganic phosphate-a new candidate for mediator of functional vasodilatation in skeletal muscle. J. Physiol. 206: 29–30P, 1970.

    Google Scholar 

  • Hilton, S. M., Jeffries, M. C. & Vrbova, C. Functional specialisations of the vascular bed of soleus. J. Physiol. 206: 543–562, 1970.

    PubMed  CAS  Google Scholar 

  • Hirche, Hj., D. Grüm, Waller, W. Utilization of carbohydrates and free fatty acids by the gastrocnemius of the dog during long lasting rhythmical exercise. Pflüger’s Archiv f. gesamte Physiologie, in press.

    Google Scholar 

  • Hudlicka, O. Resting and postcontraction blood flow in slow and fast muscles of the chick during development. Microvascular Research, 1: 390–402, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Kugelberg, E., Edstrom, L. Differential histochemical effects of muscle contractions on physphorylase and glycogen in various types of fibres: relationh fatigue. J. Neurol, Neuorsurg. Psychiat. 31: 415–423, 1968.

    Article  CAS  Google Scholar 

  • Manners, D. J. Glycogen storage disease, type I. In Whelan, W. J. (ed). Control of glycogen metabolism, Ciba Foundation Symposium, Churchill, London, 1964.

    Google Scholar 

  • Paul, P. FFA metabolism of normal dogs during steady-state exercise at different work loads. J. appl. Physiol. 28: 127–132, 1970.

    PubMed  CAS  Google Scholar 

  • del Pozo, E. C. Transmission fatigue and contraction fatigue. Amer. J. Physiol. 135: 763–771, 1942.

    Google Scholar 

  • Randle, P. J. Newsholme, E. A., Garland, P. B. Regulation of glucose uptake by muscle. Biochem. J. 93: 652–665, 1964.

    PubMed  CAS  Google Scholar 

  • Sacks, J., Cleland, M. C. Absence of phosphate interchanges in repetitive muscular contractions. Amer. J. Physiol. 198: 300–302, 1960.

    PubMed  CAS  Google Scholar 

  • Wahren, J. Human forearm metabolismduring exercise IV. Glucose uptake at different work intensities. Scand. J. Clin. Lab. Invest. 25: 129–135, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. E., Sacktor, B., Tiekert, G. G. In situ regulation of glycolysis in tetanized cat skeletal muscle. Arch. Biochem. Biophys. 120: 542–546, 1967.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Hudlicka, O. (1971). Uptake of Substrates in Isolated Contracting Slow and Fast Muscles in Situ in Relation to Fatigue. In: Pernow, B., Saltin, B. (eds) Muscle Metabolism During Exercise. Advances in Experimental Medicine and Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4609-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4609-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4611-1

  • Online ISBN: 978-1-4613-4609-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics