Studies on the Distribution of Substituents in Hydroxyethylcellulose

  • E. D. Klug
  • D. P. Winquist
  • C. A. Lewis
Conference paper
Part of the Polymer Science and Technology book series (PST, volume 2)


Cellulose is a naturally-occurring linear polymer of β-d-glucopyranose residues (anhydroglucose units) joined through 1→4-glucosidic linkages. Each anhydroglucose unit (AGU) in every molecular chain (except those at chain ends) contains three hydroxyl groups, one primary and two secondary. Cellulose derivatives, usually ethers or esters, are obtained by substituting some of these hydroxyls with the desired substituent groups under appropriate conditions. Since most substitution reactions take place under heterogeneous conditions, the substitution pattern which develops is nonuniform.


Cellulose Derivative Hydrolysis Condition Phthalic Anhydride Cellulose Ether Anhydroglucose Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Wirick, J. Polymer Science, Part A-1, 6, 1705 (1968).CrossRefGoogle Scholar
  2. 2.
    S. S. Bhattacharjee and A. S. Perlin, J. Poly. Sci., Part C, No. 36, 509 (1971).Google Scholar
  3. 3.
    E. D. Klug, J. Poly. Sci., Part C, No. 6, 491 (1971).Google Scholar
  4. 4.
    L. F. McBurney in E. Ott, H. Spurlin, and M. Grafflin, Eds., Cellulose and Cellulose Derivatives Interscience Publishers, New York, 1954, p. 108.Google Scholar
  5. 5.
    W. R. Fetzer, E. K. Crosby, C. E. Engel, and L. C. Kirst, Ind. Eng. Chem., 45, 1075 (1953).CrossRefGoogle Scholar
  6. 6.
    E. Hagglund, Chemistry of Wood Academic Press, New York, pp. 86–103 (1951).Google Scholar
  7. 7.
    O. Ramnas and O. Samuelson, Svensk Papperstidning, 71, 674 (1969).Google Scholar
  8. 8.
    G. Ritter, R. M. Selory, and R. L. Mitchell, Ind. Eng. Chem. Anal. Ed., 4, 202 (1932).CrossRefGoogle Scholar
  9. 9.
    J. F. Saeman, J. Bubl, and E. L. Harris, Tappi, 37, 336 (1954).Google Scholar
  10. 10.
    ASTM Standard Method D 1915–63.Google Scholar
  11. 11.
    M. L. Lauer, A. F. Root, F. Shafizadeh, and J. C. Lowe, Tappi, 50, 618 (1967).Google Scholar
  12. 12.
    O. Ramnas and O. Samuelson, Svensk Papperstidning, 71, 829 (1968).Google Scholar
  13. 13.
    R. R. Barton, Analytical Biochemistry, 14, 258–260 (1966).CrossRefGoogle Scholar
  14. 14.
    A. Dahiquest, Analytical Biochemistry, 7, 18–25 (1964).CrossRefGoogle Scholar
  15. 15.
    A. S. Hester, “Specific Colorimetric Reagents for Glucose” Abstracts of Papers, 129th Meeting ACS, p. 31C, April 1956.Google Scholar
  16. 16.
    R. B. McComb, W. D. Yushok, and W. G. Butt, J. Franklin Inst., 263, 161–165 (1957).CrossRefGoogle Scholar
  17. 17.
    O. Hansen, Scandinay. J. Clin. and Lab. Investigations, 14, 651–655 (1956).Google Scholar
  18. 18.
    E. T. Reese et al, J. Bacteriol., 59, 485 (1950).Google Scholar
  19. 19.
    E. T. Reese, Ind. Eng. Chem., 49, 89 (1957).CrossRefGoogle Scholar
  20. 20.
    P. T. Murphy, G. N. Richards, and E. Senogles, Carbohyd Res., 7, 460 (1968).CrossRefGoogle Scholar
  21. 21.
    R. Senju, J. Ag. Chem. Soc. Japan, 22, 50 (1958).Google Scholar
  22. 22.
    J. Quinchon, Comp. rend., 248, 225 (1959).Google Scholar
  23. 23.
    F. L. Ho, R. Kohler, and G. Ward, Anal. Chem., 44, 178 (1972).CrossRefGoogle Scholar
  24. 24.
    G. Froment, Ind. Chem. Belg., 23, 115 (1958).Google Scholar
  25. 25.
    “Glucostat,” Worthington Biochemical Corp., Freehold, New Jersey.Google Scholar
  26. 26.
    N. M. Bikales and L. Segal, Eds., Cellulose and Cellulose Derivatives Parts IV and V, Wiley-Interscience, New York, 1971.Google Scholar
  27. 27.
    Ibid, pp. 991–1006.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. D. Klug
    • 1
  • D. P. Winquist
    • 1
  • C. A. Lewis
    • 1
  1. 1.Hercules IncorporatedWilmingtonUSA

Personalised recommendations