Skip to main content

The Adsorbed Helium Film: Two Dimensionality Versus Reality

  • Chapter
Monolayer and Submonolayer Helium Films
  • 57 Accesses

Abstract

The lesson of monolayer physics is certainly the usefulness of two-dimensional models in the understanding and interpretation of experimental results.1 This is especially true for those systems using graphite-like substrates and, in particular, those systems in which helium is the adsorbed species. The two-dimensional nature of adsorption on the graphite-like substrates is due to both the strong interaction of gases with these solids, and the fact that the surfaces of these substrates are unusually clean and nearly ideal.2,3

Work supported by the U. S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Dash, J. Low Temp. Phys. 3, 301 (1970).

    Article  ADS  Google Scholar 

  2. A. D. Crowell and R. B. Steele, J. Chem. Phys. 34, 1347 (1961).

    Article  ADS  Google Scholar 

  3. S. Ross and J. P. Olivier, “On Physical Adsorption,” (Interscience, New York, 1964) Chapter VII, p. 186.

    Google Scholar 

  4. M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches, Phys. Rev. A (to be published).

    Google Scholar 

  5. W. A. Steele and E. J. Derderian, in “Adsorption-Desorption Phenomena,” ed. F. Ricca (Academic Press, London, 1972). Also R. L. Siddon and M. Schick, this conference.

    Google Scholar 

  6. M. Bretz and J. G. Dash, Phys. Rev. Letters 27, 647 (1971).

    Article  ADS  Google Scholar 

  7. C. E. Campbell and M. Schick, Phys. Rev. A 5, 1919 (1972).

    Article  ADS  Google Scholar 

  8. M. Schick and R. L. Siddon, Phys. Rev. A 8, (19731973).

    Article  Google Scholar 

  9. M. Bretz, G. B. Huff, and J. G. Dash, Phys. Rev. Letters 28, 729 (1972).

    Article  ADS  Google Scholar 

  10. N. D. Mermin, Phys. Rev. 176, 250 (1968).

    Article  ADS  Google Scholar 

  11. H.-J. Mikeska and H. Schmidt, J. Low Temp.Phys. 2, 371 (1970).

    Article  ADS  Google Scholar 

  12. B. Jancovici, Phys. Rev. Letters 19, 20 (1967).

    Article  ADS  Google Scholar 

  13. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  14. A. D. Novaco (to be published).

    Google Scholar 

  15. A. D. Novaco, Phys. Rev. A 7, 1653 (1973).

    Article  ADS  Google Scholar 

  16. G. A. Stewart, S. Siegel, and D. L. Goodstein, Proc. 13th Int. Conf. Low Temp. Phys. Boulder, Colorado, 1972 (1973).

    Google Scholar 

  17. M. Born and K. Huang, “Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).

    MATH  Google Scholar 

  18. R. A. Guyer, in “Solid State Physics,” edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York, 1969), Vol. 23.

    Google Scholar 

  19. N. R. Werthamer, Am. J. Phys. 37, 763 (1969).

    Article  ADS  Google Scholar 

  20. H. Horner, Z. Phys. 205, 72 (1967).

    Article  ADS  Google Scholar 

  21. M. L. Klein and G. K. Horton, J. Low Temp. Phys. 9, 151 (1972).

    Article  ADS  Google Scholar 

  22. N. R. Werthamer, Phys. Rev. A 7, 254 (1973).

    Article  ADS  Google Scholar 

  23. S. B. Trickey, N. M. Witriol, and G. L. Morley, Phys. Rev. A 7, 1662 (1973).

    Article  ADS  Google Scholar 

  24. D. E. Hagen, A. D. Novaco, and F. J. Milford, in “Adsorption-Desorption Phenomena,” edited by F. Ricca (Academic Press, London, 1972).

    Google Scholar 

  25. R. L. Elgin, Thesis (Cal. Inst. Tech. 1973) unpublished, and R. L. Elgin and D. L. Goodstein, Proc. 13th Int. Conf. Low Temp. Phys., Boulder, Colorado, 1972 (1973).

    Google Scholar 

  26. Some evidence of the importance of this kind of effect has been reported in Reference 25.

    Google Scholar 

  27. The “optical” branch will, in fact, not be polarized purely in the direction normal to the surface since the dynamical matrix will, in general, no longer be block diagonal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Novaco, A.D. (1973). The Adsorbed Helium Film: Two Dimensionality Versus Reality. In: Daunt, J.G., Lerner, E. (eds) Monolayer and Submonolayer Helium Films. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4580-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4580-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4582-4

  • Online ISBN: 978-1-4613-4580-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics