Advertisement

New Enzyme Synthesis as a Long-Term Adaptation to Increased Transmitter Utilization

  • Hans Thoenen
  • Franz Oesch

Abstract

Adequate regulatory function of the peripheral autonomous nervous system depends on both prompt liberation and prompt inactivation of the neurohumoral transmitter substances.

Keywords

Sciatic Nerve Tyrosine Hydroxylase Adrenal Medulla Sympathetic Ganglion Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B.N. and Martin, R.G. 1964. Biochemical aspects of genetics: the operon. Ann. Rev. Biochem. 33: 235.PubMedCrossRefGoogle Scholar
  2. Bhatnagar, R.K. and Moore, K.E. 1971. Effects of electrical stimulation, α-methyltyrosine and desmethylimipramine on the norepinephrine contents of neuronal cell bodies and terminals. J. Pharmacol. Exp. Ther. 178: 450.PubMedGoogle Scholar
  3. Black, I.B., Hendry, I., and Iversen, L.L. 1971. Differences in the regulation of tyrosine hydroxylase and DOPA decarboxylase in sympathetic ganglia and adrenals. Nature New Biol. 231: 27.PubMedCrossRefGoogle Scholar
  4. Costa, E. 1970. Simple neuronal models to estimate turnover rate of noradrenergic transmitter in vivo. Adv. Biochem. Psychopharmacol. 2: 169.PubMedGoogle Scholar
  5. Cragg, B.G. 1970. What is the signal for chromatolysis? Brain Res. 23: 1.PubMedCrossRefGoogle Scholar
  6. Dahlström, A. 1967. The interneuronal distribution of noradrenaline and the transport and life-span of amine storage granules in the sympathetic adrenergic neuron. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmakol. 257: 93.CrossRefGoogle Scholar
  7. Dahlstm, A. and Häggendal, J. 1966. Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. Scand. 67: 278.CrossRefGoogle Scholar
  8. Dairman, W. and Udenfriend, S. 1970. Increased conversion of tyrosine to catecholamines in the intact rat following elevation of tissue tyrosine hydroxylase levels by administered phenoxybenzamine. Mol. Pharmacol. 6: 350.PubMedGoogle Scholar
  9. Davison, P.F. 1970. Axoplasmic transport: Physical and chemical aspects. In: The Neurosciences. New York: The Rockefller Univ. Press, pp. 851.Google Scholar
  10. Fischer, J.E. and Snyder, S. 1965. Disposition of norepinephrine-H3 in sympathetic ganglia. J. Pharmacol. Exp. Ther. 150: 190.PubMedGoogle Scholar
  11. Geffen, L.B. and Livett, B.G. 1971. Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51: 98.PubMedGoogle Scholar
  12. Geffen, L.B. and Rush, R.A. 1968. Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. Neurochem. 15: 925.CrossRefGoogle Scholar
  13. Gewirtz, G.P. and Kopin, I.J. 1970. Release of dopamine hydroxylase with norepinephrine during cat splenic nerve stimulation. Nature 227: 406.PubMedCrossRefGoogle Scholar
  14. Gisiger, V. and Gaide-Huguenin, A.-C. 1969. Effect of preganglionic stimulation upon RNA synthesis in the isolated sympathetic ganglion of the rat. Progr. Brain Res. 31: 125.CrossRefGoogle Scholar
  15. Haefely, W., Hürlimann, A. and Thoenen, H. 1965. Relation between the rate of stimulation and the quantity of noradrenaline liberated from sympathetic nerve endings in the isolated perfused spleen of the cat. J. Physiol. 181: 48.PubMedGoogle Scholar
  16. Håkanson, R. and Owman, C. 1966. Pineal DOPA decarboxylase and monoamine oxydase activities as related to the monoamine stores. J. Neurochem. 13: 597.PubMedCrossRefGoogle Scholar
  17. Iversen, L.L. 1967. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. London: Cambridge Univ. Press.Google Scholar
  18. Karlsson, J.O. and Sjöstrand, J. 1971. Characterization of the fast and slow components of axonal transport in retinal ganglion cells. J, Neurobiol. 2: 135.CrossRefGoogle Scholar
  19. Koelle, G.B. 1970. Neurohumoral transmission and the autonomic nervous system. In: The Pharmacological Basis of Therapeutics. (Eds., Goodman, L.S. and Gilman, A.) 4th Ed. London: The Maillan Company, p. 402.Google Scholar
  20. Kuczenski, R.T. and Mandell, A.J. 1972. Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. J. Biol. Chem. 247: 3114.PubMedGoogle Scholar
  21. Kvetnanský, R., Gewirtz, G.P., Weise, V.K. and Kopin, I.J. 1970. Effect of hypophysectomy on immobilization-induced elevation of tyrosine hydroxylase and phenylethanolamine-N-methyl transferase in the rat adrenal. Endocrinology 87: 1323.PubMedCrossRefGoogle Scholar
  22. Laduron, P. and Belpaire, F. 1968. Transport of noradrenaline and dopamine β-hydroxylase in sympathetic nerves. Life Sci. 7: 1.PubMedCrossRefGoogle Scholar
  23. Larrabee, M.G. 1969. Metabolic effects of nerve impulses and nerve-growth factor in sympathetic ganglia. Progr. Brain Res. 31: 95.CrossRefGoogle Scholar
  24. Levitt, M., Gibb, J.W., Daly, J.W., Lipton, M. and Udenfriend, S. 1967. A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo. Biochem. Pharm. 16: 1313.PubMedCrossRefGoogle Scholar
  25. Levitt, M., Spector, S., Sjoerdsma, A. and Udenfriend, S. 1965. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther. 148: 1.PubMedGoogle Scholar
  26. Livett, B.G., Geffen, L.B. and Rush, R.A. 1969. Immunohistochemical evidence for the transport of dopamine β-hydroxylase and a catecholamine binding protein in sympathetic nerves. Biochem. Pharmacol. 18: 923.PubMedCrossRefGoogle Scholar
  27. Molinoff, P.B. and Axelrod, J. 1971. Biochemistry of catecholamines. Ann. Rev. Biochem. 40: 465.PubMedCrossRefGoogle Scholar
  28. Molinoff, P.B., Brimijoin, S., Weinshilboum, R. and Axelrod, J. 1970. Neurally mediated increase in dopamine β-hydroxylase activity. Proc. Nat. Acad. Sci. USA 66:453.PubMedCrossRefGoogle Scholar
  29. Molinoff, P.B., Weinshilboum, R. and Axelrod, J. 1971. A sensitive enzymatic assay for dopamine 6-hydroxylase. J. Pharmacol. Exp. Ther. 178: 425.PubMedGoogle Scholar
  30. Mueller, R.A. 1971. Effect of 6-hydroxydopamine on the synthesis and turnover of catecholamines and protein in the adrenal. In: 6-Hydroxydopamine and Catecholamine Neurons (Eds., Malmfors, T. and Thoenen, H.) Amsterdam-London: North-Holland Publishing Company, pp. 291.Google Scholar
  31. Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 a. Adrenal tyrosine hydroxylase; compensatory increase in activity after chemical sympathectomy. Science 158: 468.CrossRefGoogle Scholar
  32. Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 b. Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. Exp. Ther. 169: 74.PubMedGoogle Scholar
  33. Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 c. Inhibition of trans-synaptically increased tyrosine hydroxylase activity by cycloheximide and actinomycin D. Mol. Pharmacol. 5: 463.PubMedGoogle Scholar
  34. Musacchio, J.M., Julou, L., Kety, S.S. and Glowinski, J. 1969. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Nat. Acad. Sci.USA 63: 1117.PubMedCrossRefGoogle Scholar
  35. Patrick, R.L. and Kirshner, N. 1971. Effect of stimulation on the levels of tyrosine hydroxylase, dopamine β-hydroxylase, and catecholamines in intact and denervated rat adrenal glands. Mol. Pharmacol. 7: 87.PubMedGoogle Scholar
  36. Reis, D.J., Moorhead, D.T., Rifkin, M., Joh, T.H. and Goldstein, M. 1971. Changes in adrenal enzymes synthesizing catecholamines in attack behavior evoked by hypothalamic stimulation in the cat. Nature 229:562.PubMedCrossRefGoogle Scholar
  37. Richter, D. 1970. Protein metabolism and functional activity. In: Protein Metabolism of the Nervous System (Ed. Lajtha, A.) London: Plenum Press, pp. 241.Google Scholar
  38. Sedvall, G.C. and Kopin, I.J. 1967. Influence of sympathetic denervation and nerve impulse activity on tyrosine hydroxylase in the rat submaxillary gland. Biochem. Pharmacol. 16: 39.CrossRefGoogle Scholar
  39. Smith, A.D., De Potter, W.P., Moerman, E.J. and De Schaepdryver, A.F. 1970. Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve. Tissue and Cell 2: 547.PubMedCrossRefGoogle Scholar
  40. Thoenen, H. 1969. Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Berlin-Heidelberg-New York: Springer-Verlag.Google Scholar
  41. Thoenen, H. 1970. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure of rats. Nature 228: 861.PubMedCrossRefGoogle Scholar
  42. Thoenen, H. 1972. Comparison between the effect of neuronal activity and nerve growth factor on enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev. 24:255.PubMedGoogle Scholar
  43. Thoenen, H., Kettler, R., Burkard, W. and Saner, A. 1971. Neurally mediated control of enzymes involved in the synthesis of norepinephrine: Are they regulated as an operational unit? Naunyn-Schmiedebergs Arch. Pharmak. 270: 146.CrossRefGoogle Scholar
  44. Thoenen, H., Mueller, R.A. and Axelrod, J. 1969 a. Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission. Nature 221: 1264.PubMedCrossRefGoogle Scholar
  45. Thoenen, H., Mueller, R.A. and Axelrod, J. 1969 b. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 169: 249.PubMedGoogle Scholar
  46. Thoenen, H., Mueller, R.A. and Axelrod, J. 1970. Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc. Nat. Acad. Sci. USA 65: 58.PubMedCrossRefGoogle Scholar
  47. Thoenen, H. and Tranzer, J.P. 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch. Pharmak. 261: 271.Google Scholar
  48. Udenfriend, S. and Dairman, W. 1971. Regulation of norepinephrine synthesis. Adv. Enzyme Regul. 9: 145.CrossRefGoogle Scholar
  49. Viveros, O.H., Arqueros, L. and Kirshner, N. 1968. Release of catecholamines and dopamine g-oxidase from the adrenal medulla. Life Sci. 7: 609.CrossRefGoogle Scholar
  50. Viveros, O.H., Arqueros, L., Connett, R.J. and Kirshner, N. 1969. Mechanism of secretion from the adrenal medulla IV. The fate of storage vesicles following insulin and reserpine administration. Mol. Pharmacol. 5: 69.PubMedGoogle Scholar
  51. Weiner, N. 1972. Modification of norepinephrine synthesis in intact tissue during short-term adrenergic nerve stimulation. Pharmacol. Rev, (in press).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Hans Thoenen
    • 1
  • Franz Oesch
    • 1
  1. 1.Department of PharmacologyBiocenter of the UniversitySwitzerland

Personalised recommendations