Skip to main content

Multiple Measures of Compensatory Adaptation in Catecholamine Biosynthesis

  • Chapter
New Concepts in Neurotransmitter Regulation

Abstract

It has become apparent that the in vivo rate of catecholamine synthesis is subject to control by a variety of factors. The first such regulating influence to be described, and probably the most important, was the acute effect of sympathetic nerve activity on the catecholamine synthetic rate. Work from a number of different laboratories has demonstrated that changes in sympathetic tone result in an immediate and corresponding alteration of the rate of catecholamine synthesis (Alousi and Weiner, 1966; Gordon et al., 1966; Sedvall and Kopin, 1967; Dairman and Udenfriend, 1970 a). Evidence has been presented that the activity of tyrosine hydroxylase, the rate limiting enzyme in catecholamine synthesis (Levitt et al., 1965), is being reversibly modified through a mechanism thought to involve end-product inhibition by catecholamines (Alousi and Weiner, 1966; Neff and Costa, 1966; Spector et al., 1967). This occurs without an actual change in the level of tyrosine hydroxylase enzyme (Dairman et al., 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alousi, A. and Weiner, N. 1966. The regulation of norepinephrine synthesis in sympathetic nerves: Effects of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc. Nat. Acad. Sci. USA 56: 1491–1496.

    Article  PubMed  CAS  Google Scholar 

  • Bartholini, G. and Pletscher, A. 1968. Cerebral accumulation and metabolism of C14 -dopa after selective inhibition of peripheral decarboxylase. J. Pharmacol. Exp. Ther. 161: 14–20.

    PubMed  CAS  Google Scholar 

  • Berkowitz, B.A., Spector, S., Brossi, A., Focella, A. and Teitel, S. 1970. Preparation and biological properties of (-) and (+)- 6-hydroxydopa. Experimentia 26: 982–983.

    Article  CAS  Google Scholar 

  • Burkard, W.P., Gey, K.F., and Pletscher, A. 1964. Inhibition of decarboxylase of aromatic amino acids by 2,3,4-trihydroxy-benzylhydrazine and its seryl derivative. Arch, Biochem. Biophys. 107: 187–196.

    Article  CAS  Google Scholar 

  • Dairman, W. 1972, Catecholamine concentration and the activity of tyrosine hydroxylase after an increase in the concentration of tyrosine in rat tissues. Brit. J. Pharmacol. 44: 307–310.

    CAS  Google Scholar 

  • Dairman, W., Gordon, R., Spector, S., Sjoerdsma, A. and Udenfriend, S. 1968. Increased synthesis of catecholamines in the intact rat following administration of α-adrenergic blocking agents. Mol. Pharmacol. 4: 457–464.

    PubMed  CAS  Google Scholar 

  • Dairman, W. and Udenfriend, S. 1970 a. Effect of ganglionic blocking agents on the increased synthesis of catecholamines resulting from α-adrenergic blockade on exposure to cold. Biochem. Pharmacol. 19: 979–984.

    Article  CAS  Google Scholar 

  • Dairman, W. and Udenfriend, S. 1970 b. Increased conversion of tyrosine to catecholamines in the intact rat following elevation of tissue tyrosine hydroxylase levels by administered phenoxybenzamine. Mol. Pharmacol. 6: 350–356.

    PubMed  CAS  Google Scholar 

  • Dairman, W. and Udenfriend, S. 1971. Decrease in adrenal tyrosine hydroxylase and increase in norepineprhine synthesis in rats given L-dopa. Science 171: 1022–1024.

    Article  PubMed  CAS  Google Scholar 

  • Dairman, W. and Udenfriend, S. 1972. Studies on the mechanism of the L-3,4-dihydroxyphenylalanine induced decrease in tyrosine hydroxylase activity. Mol. Pharmacol. 8: 293–299.

    PubMed  CAS  Google Scholar 

  • Deitrich, R.A. and Hellerman, L. 1963. Diphosphopyridine nucleotide-linked aldehyde dehydrogenase II inhibitors. Biol. Chem. 238: 1683–1689.

    CAS  Google Scholar 

  • Erwin, G.V. and Deitrich, R.A. 1965. Brain aldehyde dehydrogenase localization, purification, and properties. J. Biol. Chem. 241: 3533–3539.

    Google Scholar 

  • Gordon, R., Spector, S., Sjoerdsma, A. and Udenfriend, S. 1966. Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol. Exp. Ther. 153: 440–447.

    PubMed  CAS  Google Scholar 

  • Holtz, P., Stock, K. and Westermann, E. 1964. Pharmakologies des tetrahydropapaerolins und weine entstehung aus dopamin naunyn — Schmeideberg. Arch. Pharmakol. Exp. Pathol. 248: 387–405.

    CAS  Google Scholar 

  • Johnson, G.A., Boukma, S.J. and Kim, E.G. 1970. In vivo inhibition of dopamine-β-hydroxylase by l-phenyl-3-(2-thiazolyl)-2-thiourea (U-14–624). J. Pharmacol. Exp. Ther. 171: 80–87.

    PubMed  CAS  Google Scholar 

  • Kvetnansky, R., Gewirtz, G.P., Weise, V.K. and Kopin, I.J. 1970. Effect of hypophysectomy on immobilization-induced elevation of tyrosine hydroxylase and phenylethanolamine-N-methyl transferase in the rat adrenal. Endocrinology 87: 1323–1329.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A. and Udenfriend, S. 1965. Elucidation of the rate limiting step in norepinephrine biosynthesis using the perfused guinea pig heart. Pharmacol. Exp. Ther. 148: 1–8.

    CAS  Google Scholar 

  • Lloyd, T. and Weiner, N. 1970. Isolation and characterization of the tyrosine hydroxylase cofactor from bovine adrenal medulla. Pharmacologist 12: 287.

    Google Scholar 

  • Mueller, R.A., Thoenen, K. and Axelrod, J. 1969 a. Adrenal tyrosine hydroxylase: Compensatory increase in activity after chemical sympathectomy. Science 163: 468–469.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 b. Inhibition of transsynaptically increased tyrosine hydroxylase activity by cycloheximide and actinomycin D. Mol. Pharmacol. 5: 463–469.

    PubMed  CAS  Google Scholar 

  • Mueller, R.A., Thoenen, H. and Axelrod, J. 1970. Effect of pituitary and ACTH on the maintenance of basal tyrosine hydroxylase activity in the rat adrenal gland. Endocrinology 86: 751–755.

    Article  PubMed  CAS  Google Scholar 

  • Neff, N.H. and Costa, E. 1966. A study of the control of catecholamine synthesis. Fed. Proc. 25: 259.

    Google Scholar 

  • Ong, H.H., Creveling, C.R. and Daly, J.W. 1969. The synthesis of 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) a centrally active norepinephrine-depleting agent. J. Med. Chem. 12: 458–461.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, R.L. and Kirshner, N. 1971. Effect of stimulation on the levels of tyrosine hydroxylase and catecholamines in intact and denervated rat adrenal glands. Mol. Pharmacol. 7: 87–96.

    PubMed  CAS  Google Scholar 

  • Potter, L.T. and Axelrod, J. 1963. Properties of norepinephrine storage particles of the rat heart. Pharmacol. Exp. Ther. 142: 299–305.

    CAS  Google Scholar 

  • Sedvall, G.C. and Kopin, I. 1967. Acceleration of norepinephrine synthesis in the rat submaxillary gland in vivo during sympathetic nerve stimulation. Life. Sci. 6: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Shiman, R., Akino, M. and Kaufman, S. 1971. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 246: 1330–1340.

    PubMed  CAS  Google Scholar 

  • Spector, S., Gordon, R., Sjoerdsma, A. and Udenfriend, S. End product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Mol. Pharmacol. 3: 549–555.

    Google Scholar 

  • Stjarne, L., Roth, H.L. and Lishajko, F. 1967. Noradrenaline formation from dopamine in isolated subcellular particles from bovine splenic nerve. Biochem. Pharmacol. 16: 1729–1739.

    Article  PubMed  CAS  Google Scholar 

  • Stone, C.A., Stavorski, J.M., Ludden, C.T., Wenger, H.C., Ross, C.A. Totaro, J.A. and Porter, C.C. 1963, Comparison of some pharmacologic effects of certain 6-substituted dopamine derivatives with reserpine, guanethidine and metaramenol. J. Pharmacol. Exp. Ther. 142: 147–156.

    PubMed  CAS  Google Scholar 

  • Tarver, J., Berkowitz, B. and Specotr, S. 1971. Alteration in tyrosine hydroxylase and monoamine oxidase activity in blood vessels. Nature (New Biology) 231: 252–253.

    CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A. and Axelrod, J. 1969. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. Exp. Ther, 169: 249–254.

    PubMed  CAS  Google Scholar 

  • Thoenen, H. and Tranzer, J.P. 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Arch. Pharmacol. Exp. Path. 261: 271–288.

    CAS  Google Scholar 

  • Viveros, O.H., Argqueros, L., Connett, R.J. and Kirshner, N. 1969. Mechanism of secretion from the adrenal medulla IV. The fate of the storage vesicles following insulin and reserpine administration. Mol. Pharmacol. 5: 69–82.

    PubMed  CAS  Google Scholar 

  • Walsh, M.J., Davis, V.E. and Yasumitsu, Y. 1970. Tetrahydropapaveroline: An alkaloid metabolite of dopamine in vitro. J. Pharmacol. Exp. Ther. 174: 388–400.

    PubMed  CAS  Google Scholar 

  • Weiner, N. and Mosimann, W.F. 1970. The effect of insulin on the catecholamine content and tyrosine hydroxylase activity of cat adrenal glands. Biochem. Pharmacol. 19: 1189–1199.

    Article  CAS  Google Scholar 

  • Whitsett, T.L., Halushka, P.V. and Goldberg, L.I. 1970. Attenuation of post-ganglionic sympathetic nerve activity by L-dopa. Circ. Res. 27: 561–570.

    PubMed  CAS  Google Scholar 

  • Wurtman, R.J., Chou, C. and Rose, C. 1970. The fate of C14-dihydroxyphenylalanine (L-dopa) in the whole mouse. J. Pharmacol. Exp. Ther. 174: 351–356.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Dairman, W. (1973). Multiple Measures of Compensatory Adaptation in Catecholamine Biosynthesis. In: Mandell, A.J. (eds) New Concepts in Neurotransmitter Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4574-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4574-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4576-3

  • Online ISBN: 978-1-4613-4574-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics