Advertisement

Tactics for Minimal Protection in Peptide Synthesis

  • Ralph Hirschmann
  • Daniel F. Veber

Abstract

Viel allgemeinerer Anwendung fähig ist, wie wir im folgenden zeigen, der Rest C6H5·CH2·O·CO der Benzylester-kohlensäure, kurz Carbobenzoxy-Rest (Cbzo) gennant; denn er lässt sich mit Hilfe des leicht zugänglichen Chlorids C6H5·CH2O·CO·Cl unschwer in Amino-säuren der verschiedensten Art einführen… und—was das Wesentliche ist—durch einfache katalytische Hydrierung im offenen Gefäss in Form von Toluol und Kohlendioxyd wieder abspalten. (Max Bergmann and Leonidas Zervas, Chem. Ber. 65:1192, 1932)

Keywords

Peptide Synthesis Blocking Group Catalytic Hydrogenation Aqueous Acetic Acid Minimal Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. W., 1953, The synthesis of an arginyl peptide, J. Amer. Chem. Soc. 75: 6081.CrossRefGoogle Scholar
  2. Bailey, J. L.. 1949. A new peptide synthesis, Nature 164: 889.PubMedCrossRefGoogle Scholar
  3. Bailey, J. L., 1950. The synthesis of simple peptides from anhydro-N-carboxy-amino-acids, J. Chem. Soc. 1950: 3461.CrossRefGoogle Scholar
  4. Bartlett, P. D., and Dittmer, D. C., 1957, A kinetic study of the Leuchs anhydrides in aqueous solution. Il.. J. Am. Chem. Soc. 79: 2159.CrossRefGoogle Scholar
  5. Bartlett, P. D., and Jones, R. H., 1956, A kinetic study of the Leuchs anhydrides in aqueous solution. I.. J. Am. Chem. Soc. 79: 2153.CrossRefGoogle Scholar
  6. Blâha, K., and Rudinger, J.. 1965, Amino acids and peptides. XLVIII. Rates of fission of some cycloalkyloxycarbonylglycines with hydrogen bromide in acetic acid, Coll. Czech. Chem. Commun. 30: 599.Google Scholar
  7. Bodanszky, M.. and Ondetti, M. A., 1966. “Peptide Synthesis,” Interscience, New York.Google Scholar
  8. Camble, R., Garner. R.. and Young, G. T., 1969, Amino-acids and peptides. Part XXX. Facilitation of peptide synthesis by the use of 4-picolyl esters for carboxy-group protection, J. Chem. Soc. (C) 1969: 1911.Google Scholar
  9. Denkewalter, R. G., Schwam, H., Strachan, R. G., Beesley, T. E., Veber, D. F., Schoenewaldt, E. F., Barkemeyer, H.. Paleveda, W. J.. Jr., Jacob, T. A., and Hirschmann, R., 1966, The controlled synthesis of peptides in aqueous medium. I. The use of α-amino acid Ncarboxyanhydrides, J. Am. Chem. Soc. 88: 3163.CrossRefGoogle Scholar
  10. Denkewalter, R. G, Veber. D. F.. Holly, F. W., and Hirschmann, R., 1969, Studies on the total synthesis of an enzyme. 1. Objective and strategy, J. Am. Chem. Soc. 91 (2): 502.CrossRefGoogle Scholar
  11. Dewey, R. S., Schoenewaldt, E. F., Joshua, H., Paleveda, W. J., Jr., Schwam, H., Barkemeyer, H., Arison, B. H., Veber. D. F.. Denkewalter, R. G., and Hirschmann, R., 1968, Synthesis of peptides in aqueous medium. V. Preparation and use of 2,5-thiazolidinediones (NTA’s). Use of the 13C-H nuclear magnetic resonance signal as internal standard for quantitative studies, J. Am. Chem. Soc. 90: 3254.PubMedCrossRefGoogle Scholar
  12. Dewey, R. S.. Barkemeyer, H., and Hirschmann, R., 1969, Use of the N-hydroxysuccinimide ester of a-butyloxycarbonylglutamine in peptide synthesis, Chem. Ind. 1969: 1632.Google Scholar
  13. Dewey, R. S., Schoenewaldt, E. F., Joshua, H., Paleveda, W. J., Jr., Schwam, H., Barkemeyer, H., Arison, B. H.. Veber. D. F., Strachan, R. G., Milkowski, J., Denkewalter, R. G., and Hirschmann, R.. 1971. The synthesis of peptides in aqueous medium. VII. The preparation and use of 2.5-thiazolidinediones in peptide synthesis, J. Org. Chem. 36 (1): 49.PubMedCrossRefGoogle Scholar
  14. Gish, D. T., and Carpenter, F. H., 1953, Preparation of arginyl peptides, J. Am. Chem. Soc. 75: 5872.CrossRefGoogle Scholar
  15. Halpern, B., and Nitecki, D. E., 1967, The deblocking of t-Butyloxycarbonyl-peptides with formic acid, Tetrahedron Letters 1967 (31): 3031.CrossRefGoogle Scholar
  16. Hirschmann, R., 1971, Synthesis of an enzyme. Accomplishments and remaining problems, Intra-Sci. Chem. Rep. 5 (3): 203.Google Scholar
  17. Hirschmann, R., Strachan, R. G., Schwam, H., Schoenewaldt, E. F., Joshua, H., Barkemeyer, B., Veber, D. F., Paleveda, W. J. Jr., Jacob, T. A., Beesley, T. E., and Denkewalter, R. G., 1967, The controlled synthesis of peptides in aqueous medium. III. Use of Leuchs’ anhydrides in the synthesis of dipeptides. Mechanism and control of side reactions, J. Org. Chem. 32: 3415.PubMedCrossRefGoogle Scholar
  18. Hirschmann, R., Schwam, H., Strachan, R. G., Schoenewaldt, E. F., Barkemeyer, H., Miller, S. M., Conn, J. B., Garsky, V.. Veber, D. F., and Denkewalter, R. G., 1971. The controlled synthesis of peptiaes in aqueous medium. VIII. The preparation and use of novel a-amino acid N-carboxyanhydrides, J. Am. Chem. Soc. 93 (11): 2746.PubMedCrossRefGoogle Scholar
  19. Hiskey, R. G., Beacham, L. M., Matl, V. G., Smith, J. N., Williams, E. B., Jr., Thomas, A. M., and Walters, E. T., 1971, Sulfer-containing polypeptides. XIV. Removal of the tertbutyloxycarbonyl group with boron trifluoride etherate, J. Org. Chem. 36: 488.PubMedCrossRefGoogle Scholar
  20. Holly, F. W., Paleveda, W. J.. Nutt. R. F., and Gal, G., Unpublished observation from these laboratories.Google Scholar
  21. Hunt, M., and du Vigneaud, V., 1938: The preparation of d-alanyl-l-histidine and /-alanyl-lhistidine and an investigation of their effect on the blood pressure in comparison with I-carnosine, J. Biol. Chem. 124: 699.Google Scholar
  22. Iwakura, Y., Uno, K., Oya, M., and Katakai, R., 1970, Stepwise synthesis of oligopeptides with N-carboxy a-amino acid anhydrides, Biopolymers 9: 1419.PubMedCrossRefGoogle Scholar
  23. Jenkins, S. R., Nutt, R. F., Dewey. R. S., Veber, D. F., Holly, F. W., Paleveda, W. J., Jr., Lanza, T., Jr., Strachan, R. G., Schoenewaldt, E. F., Barkemeyer, H., Dickinson, M. J., Sondey, J., Hirschmann, R., and Walton, E.. 1969, Studies on the total synthesis of an enzyme. III. Synthesis of a protected hexacontapeptide corresponding to the 65–24 sequence of ribonuclease A, J. Am. Chem. Soc. 91 (2): 505.PubMedCrossRefGoogle Scholar
  24. Katakai, R.. Oya, M., Uno, K, and Iwakura, Y., 1971, Stepwise synthesis of oligopeptides with N-carboxy α-amino acid anhydrides. II. Oligopeptides with some polar side chains, Biopolymers 10: 2199.PubMedCrossRefGoogle Scholar
  25. Lemieux, R. U., and Barton, M. A., 1971, Peptide conformations. I. Nuclear magnetic resonance study of the carbamate reaction of amino acids and peptides, Can. J. Chem. 49 (5): 767.CrossRefGoogle Scholar
  26. Loffet, A., and Dremier, C., 1971, A new reagent for the cleavage of the tertiary butyloxycarbonyl protecting group, Experientia 27: 1003.CrossRefGoogle Scholar
  27. Leuchs, H., 1906, Über die Glycin-carbonsäure, Berichte 39: 857.Google Scholar
  28. Losse, G., Zeidler, D.. and Grieshaber, T., 1968, Kinetik der säuren Abspaltung von N- und C-Schutzgruppen bei Peptiden, Annalen 715: 196.Google Scholar
  29. Marzotto, A., Pajetta, P.. Galzigna, L.. and Scoffone, E., 1968, Reversible acetoacetylation of amino groups in proteins, Biochim. Biophys. Acta 154: 450.PubMedGoogle Scholar
  30. McKay, F. C., and Albertson, N. F.. 1957, New amino-masking groups for peptide synthesis, J. Am. Chem. Soc. 79: 4686.CrossRefGoogle Scholar
  31. Merrifield, R. B., 1969, Solid-phase peptide synthesis, in “Advances in Enzymology,” Vol. 32 (F. F. Nord, ed.), pp. 221–296. Interscience, New York.Google Scholar
  32. Nitecki, D., 1971, Immunologically active peptides of glucagon, Intra-Sci. Chem. Rep. 5 (4): 295.Google Scholar
  33. Noda, K., Terada, Sh.. and Izumiya, N.. 1970, Modified benzyloxycarbonyl groups for protection of c-amino group of lysine. Bull. Chem. Soc. Japan 43: 1883.CrossRefGoogle Scholar
  34. Paleveda, W. J., Jr., Unpublished observation from these laboratories.Google Scholar
  35. Schnabel, E., Klostermeyer, H., and Berndt, H., 1971, Zur selektiven acidolytischen Abspaltbarkeit der tert-Butyloxycarbonyl-Gruppe, Ann. Chem. 749: 90.Google Scholar
  36. Schwyzer, R., and Rittel, W., 1961, Synthese von Peptid-Zwitschenprodukten für den Aufbau eines corticotrop wirksamen Nonadecapeptids. I. N`-t-Butyloxycarbonyl-L-lysin, N(NE-t-Butyloxycarbonyl-L-lysyl)-N`-t-butyloxycarbonyl-L-lysin, N’-t-Butyloxycarbonyl-Llysyl-L-prolyl-L-valyl-glycin und Derivate, Hely. Chim. Acta 44: 159.CrossRefGoogle Scholar
  37. Schwyzer, R., and Sieber, P., 1966, Die Totalsynthese des ß-Corticotropins (adrenocorticotropes Hormon: ACTH), Hely. Chico. Acta 49: 134.CrossRefGoogle Scholar
  38. Sieber, P., and Iselin, B., 1968a, Use of new N-aralkyloxycarbonyl protecting groups in peptide synthesis, in “Peptides 1968” (E. Bricas, ed.), p. 85, North-Holland, Amsterdam.Google Scholar
  39. Sieber, P., and Iselin, B., 1968b, 77. Selektive acidolytische Spaltung von Aralkyloxycarbonyl-Aminoschutzgruppen, Hely. Chim. Acta 51: 614.Google Scholar
  40. Siegfried, M., 1905a, Über die Bindung von Kohlensäure durch amphotere Amidokorper. II. Mitteilung, Z. Physiol. Chem. 44: 85.CrossRefGoogle Scholar
  41. Siegfried, M., 1905b, Über die Bindung von Kohlensäure durch amphotere Amidokorper, Z. Physiol. Chem. 46: 401.CrossRefGoogle Scholar
  42. Siegfried, M., 1906, Über die Abscheidung von Amidosäuren, Chem. Ber. 39: 358.Google Scholar
  43. Stadie, W. C., and O’Brien, H., 1936, The carbamate equilibrium. I. The equilibrium of amino acids, carbon dioxide, and carbamates in aqueous solution; with a note on the Ferguson-Roughton carbamate method, J. Biol. Chem. 112: 723.Google Scholar
  44. Strachan, R. G., Unpublished observation from these laboratories.Google Scholar
  45. Veber, D. F., Milkowski, J. D., Denkewalter, R. G., and Hirschmann, R., 1968, The synthesis of peptides in aqueous medium. IV. A novel protecting group for cysteine, Tetrahedron Letters 26: 2057.Google Scholar
  46. Veber, D. F., Varga, S. L., Milkowski, J. D., Joshua, H., Conn, J. B., Hirschmann, R., and Denkewalter, R. G., 1969, Studies on the total synthesis of an enzyme. IV. Some factors affecting the conversion of protected S-protein to ribonuclease S’, J. Am. Chem. Soc. 91 (2): 506.CrossRefGoogle Scholar
  47. Veber, D. F., Milkowski, J., Varga, S. L., Denkewalter, R. G., and Hirschmann, R., 1972a, Acetamidomethyl. A novel thiol protecting group for cysteine, J. Am. Chem. Soc. 94: 5456.PubMedCrossRefGoogle Scholar
  48. Veber, D. F., Brady, S. F., and Hirschmann, R., 1972b, Some novel amine protecting groups, in “Chemistry and Biology of Peptides, Proceedings of the Third American Peptide Symposium” (J. Meienhofer, ed.), Ann Arbor Science Publishers, Ann Arbor, Mich.Google Scholar
  49. Wang, S. S., and Merrifield, R. B., 1969, Preparation of some new biphenylisopropyloxycarbonyl amino acids and their application to the solid phase synthesis of a tryptophancontaining heptapeptide of bovine parathyroid hormone, Internat. J. Protein Res. I 1969: 235.Google Scholar
  50. Wesseley, F., 1925, Untersuchungen über α-Amino-N-Carbonsäureanhydride. I., Z. Physiol. Chem. 146: 72.CrossRefGoogle Scholar
  51. Weygand, F., and Csendes, E., 1952, N-Trifluoroacetyl-aminosäure, Angew. Chem. 64(5) : 136.CrossRefGoogle Scholar
  52. Yajima, H., Kawasaki, K., Okada, Y., Minami, H., Kubo, K., and Yamashite, I., 1968, Studies on peptides. XVI. Regeneration of lysine from N`-formyllysine by aqueous hydrazine or hydroxylamine and their application to the synthesis of a-melanocyte-stimulating hormone, Chem. Pharm. Bull. 16(5) : 919.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Ralph Hirschmann
    • 1
  • Daniel F. Veber
    • 1
  1. 1.Division of Merck & Co., Inc.Merck Sharp & Dohme Research LaboratoriesWest PointUSA

Personalised recommendations