Skip to main content

Transmission Processes Between Clock and Manifestations

  • Chapter
Biological Aspects of Circadian Rhythms

Abstract

Of the innumerable variables which have been shown to wax and wane over the course of the 24 h, a more modest but still considerable number have been shown to be endogenous by one or more of the criteria enumerated elsewhere [1]. The mechanism of the circadian timekeeper has been investigated mainly in unicellular organisms such as Gonyaulax, as described in Chapter 7. In more complex organisms, whether animal or plant, the rhythms are usually coordinated and consequently synchronous; all the leaves or petals of a plant move at the same time, whether their movements represent a response to light and darkness, or whether they are free-running in constant illumination. In animals such as man and the rat, in which a large number of different rhythmic manifestations can be observed, these are commonly in phase with one another, or at least show some regular phase relationship. The concept has thus arisen of a “clock”, usually supposed to reside in the brain, which controls the other rhythms by one or another form of mediation. Individual cells, tissues or organs may have their own inherent rhythmicity, which they may continue to manifest after removal from the body [2, 3] but they appear in most circumstances to have their period set, and to be locked in phase, by some master clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Mills, Human circadian rhythms. Physiol. Rev., 46, 128–171 (1966).

    PubMed  CAS  Google Scholar 

  2. E. Bünning, Das Weiterlaufen der “physiologischen Uhr” im Säugerdarm ohne zentrale Steuerung. Naturwissenschaften, 45, 68 (1958).

    Google Scholar 

  3. R. V. Andrews and G. E. Folk, Circadian metabolic patterns in cultured hamster adrenal glands. Comp. Biochem. Physiol., 11, 393–409 (1964).

    PubMed  CAS  Google Scholar 

  4. J. Aschoff, Tierische Periodik unter dem Einfluss von Zeitgebern. Z. Tierpsychol., 15, 1–30 (1958).

    Google Scholar 

  5. J. Aschoff and R. Wever, Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften, 49, 337–342 (1962).

    Google Scholar 

  6. M. Siffre, Hors du Temps (Julliard, Paris, 1963). [Beyond Time (Chatto and Windus, London, 1965)].

    Google Scholar 

  7. J. N. Mills, Circadian rhythms during and after three months in solitude underground. J. Physiol. (Lond.), 174, 217–231 (1964).

    CAS  Google Scholar 

  8. F. Halberg, M. Siffre, M. Engeli, D. Hillman and A. Reinberg, Etude en libre-cours des rhythmes circadiens du pouls, de l’alternance veille-sommeil et de l’estimation du temps pendant les deux mois de séjour souterrain d’un homme adulte jeune. C.R. Acad. Sci Paris, 260, 1259–1262 (1965).

    PubMed  CAS  Google Scholar 

  9. B. R. Clegg and K. E. Schaefer, Studies of circadian cycles in human subjects during prolonged isolation in a constant environment using 8-channel telemetry systems, S.M.R.L. Report No. 66–4 U.S.N. Submarine Med. Cent., Groton, Connecticut.

    Google Scholar 

  10. M. Siffre, A. Reinberg, F. Halberg, J. Ghata, G. Perdriel and R. Slind, L’isolement souterrain prolongé—étude de deux sujets adultes sains avant, pendant et après cet isolement. Presse Méd., 74, 915–919 (1966).

    PubMed  CAS  Google Scholar 

  11. J. Aschoff, U. Gerecke and R. Wever, Desynchronization of human circadian rhythms. Jap. J. Physiol., 17, 450–457 (1967).

    CAS  Google Scholar 

  12. J. N. Mills, Keeping in step—away from it all. New Scientist, 33, 350–351 (1967).

    Google Scholar 

  13. J. Colin, J. Timbal, C. Boutelier, Y. Houdas and M. Siffre, Rhythm of the rectal temperature during a 6-month free-running experiment. J. Appl. Physiol., 25, 170–176 (1968).

    PubMed  CAS  Google Scholar 

  14. M. Apfelbaum, A. Reinberg, P. Nillus and F. Halberg, Rhythmes circadiens de l’alternance veille-sommeil pendant l’isolement souterrain de sept jeunes femmes. Presse Méd., 77, 879–882 (1969).

    PubMed  CAS  Google Scholar 

  15. J. Aschoff, Desynchronization and resynchronization of human circadian rhythms. Aerospace Med., 40, 844–849 (1969).

    PubMed  CAS  Google Scholar 

  16. J. Ghata, F. Halberg, A. Reinberg and M. Siffre, Rhythmes circadiens désynchronisés du cycle social (17-hydroxycorticostéroides, température rectale, veille-sommeil) chez deux sujets adultes sains. Ann. Endoer. Paris, 30, 245–260 (1969).

    CAS  Google Scholar 

  17. R. P. Doe, J. A. Vennes and E. B. Flink, Diurnal variation of 17-hydroxy-corticosteroids, sodium, potassium, magnesium and creatinine in normal subjects and in cases of treated adrenal insufficiency and Cushing’s syndrome. J. clin. Endocr, 20, 253–265 (1960).

    PubMed  CAS  Google Scholar 

  18. W. Enderle, Tagesperiodische Wachstums-und Turgorschwankungen an Gewebekulturen. Planta, 39, 570–588 (1951).

    CAS  Google Scholar 

  19. T. van den Driessche, Circadian rhythms in Acetabularia: photosynthetic capacity and chloroplast shape. Exp. Cell Res., 42, 18–30 (1966).

    Google Scholar 

  20. P. R. Lewis and M. C. Lobban, Dissociation of diurnal rhythms in human subjects living on abnormal time routines. Quart. J. exp. Physiol., 42, 371–386 (1957).

    PubMed  CAS  Google Scholar 

  21. H. W. Simpson and M. C. Lobban, Effect of a 21-hour day on the human circadian excretory rhythms of 17-hydroxycorticosteroids and electrolytes. Aerospace Med., 38, 1205–1213 (1967).

    PubMed  CAS  Google Scholar 

  22. N. Kleitman, Sleep and Wakefulness, 2nd Ed. (University of Chicago Press, Chicago and London) (1963).

    Google Scholar 

  23. G. W. G. Sharp, S. A. Slorach and H. J. Vipond, Diurnal rhythms of keto– and ketogenic steroid excretion and the adaptation to changes of the activity– sleep routine. J. Endocr., 22, 377–385 (1961).

    CAS  Google Scholar 

  24. T. Hellbrügge, The development of circadian rhythms in infants. Cold Spr. Harb. Symp. quant. Biol, 25, 311–323 (1960).

    Google Scholar 

  25. J. Aschoff, Exogenous and endogenous components in circadian rhythms. Cold Spr. Harb. Symp. quant. Biol, 25, 11–28 (1960).

    CAS  Google Scholar 

  26. A. L. Elliott, J. N. Mills and J. M. Waterhouse, A man with too long a day. J. Physiol (Lond.), 212, 30–31P (1971).

    Google Scholar 

  27. M. Selinger and M. Levitz, Diurnal variation of total plasma estriol levels in late pregnancy. J, clin. Endocr., 29, 995–997 (1969).

    CAS  Google Scholar 

  28. F. A. Brown, Jr., Living clocks. Science, 130, 1535–1544 (1959).

    PubMed  Google Scholar 

  29. J. Aschoff, Der Tagesgang der Köipertemperatur beim Menschen. Klin. Wschr., 33, 545–551 (1955).

    PubMed  CAS  Google Scholar 

  30. R. T. W. L. Conroy and J. N. Mills, Human Circadian Rhythms (Churchill, London, 1970).

    Google Scholar 

  31. G. W. G. Sharp, Reversal of diurnal temperature rhythms in man. Nature, 190, 146–148 (1961).

    Google Scholar 

  32. G. Felton, Effect of time cycle change on blood pressure and temperature in young women. Nurs. Res., 19, 48–58 (1970).

    PubMed  CAS  Google Scholar 

  33. C. Kayser and A. A. Heusner, Le rhythme nychthéméral de la dépense d’énergie. J. Physiol. Paris, 49, Suppl. 3–116 (1967).

    Google Scholar 

  34. E. D. Voigt and P. Engel, Tagesrhythmische Schwankungen des Energiever brauches bei Arbeitsbelastung. Pflügers Arch. ges. Physiol, 307, R 89–90 (1969).

    CAS  Google Scholar 

  35. A. Bornstein and H. Völker, Uber die Schwankungen des Grundumsatzes. Z. ges. exp. Med., 53, 439–450 (1926).

    CAS  Google Scholar 

  36. M. B. Kreider, E. R. Buskirk and D. E. Bass, Oxygen consumption and body temperatures during the night. J. appl. Physiol, 12, 361–366 (1958).

    PubMed  CAS  Google Scholar 

  37. K. F. Koe, W. Höfler and K. Lüders, Mittlere Hauttemperatur und peripherer Extremitätentemperaturen bei den tagesperiodischen Änderungen der Wärmeabgabe. Arch. Phys. Ther. (Leipzig), 20, 221–226 (1968).

    CAS  Google Scholar 

  38. J. Aschoff and H. Pohl, Rhythmic variations in energy metabolism. Fed. Proc., 29, 1541–1552 (1970).

    PubMed  CAS  Google Scholar 

  39. C. Kayser, J. L. Imbs and J. Karacz, Rythme circadien de la consommation d’oxygène du Rat et glandes endocrines. C.R. Soc. Biol., 164, 1372–1374 (1970).

    CAS  Google Scholar 

  40. F. Heiser and L. H. Cohen, Diurnal variations of skin temperature. J. industr. Hyg., 15, 243–254 (1933).

    Google Scholar 

  41. G. Hildebrandt and P. Engelbertz, Bedeutung der Tagesrhythmik für die physikalische Therapie. Arch. phys. Ther. (Leipzig), 5, 160–170 (1953).

    CAS  Google Scholar 

  42. E. H. Geschickter, P. A. Andrews and R. W. Bullard, Nocturnal body temperature regulation in man: a rationale for sweating in sleep. J. Appl. Physiol., 21, 623–630 (1966).

    PubMed  CAS  Google Scholar 

  43. J. Aschoff, Einige allgemeine Gesetzmässigkeiten physikalischer Temperatur regulation. Pflügers Arch. ges. Physiol., 249, 125–136 (1947).

    CAS  Google Scholar 

  44. K. Honma, K. Sekine, E. Harada and K. Kimura, The diurnal patterns of the temperature in human toes, fingers and ears. Z. Biol., 115, 299–310 (1966).

    Google Scholar 

  45. R. E. Smith, Circadian variations in human thermoregulatory responses. J. appl. Physiol., 26, 554–560 (1969).

    PubMed  CAS  Google Scholar 

  46. G. W. Crockford, C. T. M. Davies and J. S. Weiner, Circadian changes in sweating threshold. J. Physiol (Lond.), 207, 26–27P (1970).

    Google Scholar 

  47. A. Kappas, W. Soybel, D. K. Fukushima and T. F. Gallagher, Studies on pyrogenic steroids in man. Trans. Ass. Amer. Phycns., 72, 54–61 (1959).

    CAS  Google Scholar 

  48. A. Kappas, W. Soybel, P. Glickman and D. K. Fukushima, Fever-producing steroids of endogenous origin in man. Arch, intern. Med., 105, 701–708 (1960).

    CAS  Google Scholar 

  49. L. Hellman, H. L. Bradlow, B. Zumoff, D. K. Fukushima and T. F. Gallagher, Thyroid-androgen interrelations and the hypocholesteremic effect of androsterone. J. clin. Endoer., 19, 936–948 (1959).

    CAS  Google Scholar 

  50. J. J. Shprwood, A relation between arousal and performance. Amer. J. Psychol, 78, 461–465 (1965).

    Google Scholar 

  51. M. J. F. Blake, Time of day effects on performance in a range of tasks. Psychon. Sci., 9, 349–350 (1967).

    Google Scholar 

  52. N. T. Loveland and H. L. Williams, Adding, sleep loss and body temperature. Percept. Mot. Skills, 16, 923–929 (1963).

    Google Scholar 

  53. K. E. Klein, H. M. Wegmann and H. Brüner, Circadian rhythm in indices of human performance, physical fitness and stress resistance. Aerospace Med., 39, 512–518 (1968).

    PubMed  CAS  Google Scholar 

  54. D. S. P. Schubert, Simple task rate as a direct function of diurnal sympathetic nervous system predominance. J. comp, physiol. Psychol, 68, 434–436 (1969).

    Google Scholar 

  55. M. J. F. Blake and W. P. Colquhoun, Experimental studies of shift work. Ergonomics, 8, 376 (1965).

    Google Scholar 

  56. W. P. Colquhoun, M. J. F. Blake and R. S. Edwards, Experimental studies of shift-work. I: A comparison of “rotating” and “stabilized” 4-hour shift systems. Ergonomics, 11, 437–453 (1968).

    PubMed  CAS  Google Scholar 

  57. W. P. Colquhoun, M. J. F. Blake and R. S. Edwards, Experimental studies of shift-work. II: Stabilized 8-hour shift systems. Ergonomics, 11, 527–546 (1968).

    PubMed  CAS  Google Scholar 

  58. W. P. Colquhoun, M. J. F. Blake and R. S. Edwards, Experimental studies of shift work. III: Stabilized 12-hour shift systems. Ergonomics, 12, 865–882 (1969).

    PubMed  CAS  Google Scholar 

  59. R. T. Wilkinson, R. H. Fox, F. R. Goldsmith, I. F. G. Hampton and H. E. Lewis, Psychological and physiological responses to raised body temperature. J. appl Physiol, 19, 287–291 (1964).

    PubMed  CAS  Google Scholar 

  60. G.J. Stephens and F. Halberg, Human time estimation. Nurs. Res., 14, 310–317 (1965).

    PubMed  CAS  Google Scholar 

  61. F. Halberg, The 24-hour scale: a time dimension of adaptive functional organization. Perspect. Biol. Med., 3, 491–527 (1960).

    PubMed  CAS  Google Scholar 

  62. D. Pfaff, Effects of temperature and time of day on time judgments. J. exp. Psychol, 76, 419–422 (1968).

    PubMed  CAS  Google Scholar 

  63. R. Günther, E. Knapp and F. Halberg, Circadiane Rhythmometrie mittels elektronischer Rechner zur Beurteiling von Kurwirkungen, in: Kurverlaufs– und Kurerfolgsbeurteilung, W. Teichmann (ed.). Synposion II (Sanitas– Verlag, Bad Wörishofen, 1968), pp. 106–111.

    Google Scholar 

  64. R. Günther, E. Knapp and F. Halberg, Referenznormen der Rhythmometrie: Circadiane Acrophasen von zwanzig Körperfunktionen. (Sonderband der Z. für Bäder-und Klimaheilkunde) (Schattauer Verlag, Stuttgart, 1969).

    Google Scholar 

  65. D. H. Thor, Diurnal variability in time estimation. Percept. Mot. Skills, 15, 451–454 (1962).

    PubMed  CAS  Google Scholar 

  66. P. Fraisse, M. Siffre, G. Oleron and N. Zuili, Le rhythme veille-sommeil et l’estimation du temps, in: Cycles Biologiques et Psychiatrie, J. de Ajuriaguerra (ed.), Symposium Bel-Air III, Geneva, September 1967 (Georg & Go. and Masson & Co., Geneva and Paris, 1969), pp. 257–265.

    Google Scholar 

  67. H. Piéron, The sensations: their functions, processes and mechanisms (Yale University Press, New Haven, 1952), pp. 293–294.

    Google Scholar 

  68. R. S. Kleber, W. T. Lhamon and S. Goldstone, Hyperthermia, hyperthyroidism, and time judgment, J. Comp. Physiol Psychol, 56, 362–365 (1963).

    PubMed  CAS  Google Scholar 

  69. A. D. Baddeley, Time estimation at reduced body temperature. Amer. J. Psychol, 79, 475–479 (1966).

    PubMed  CAS  Google Scholar 

  70. H. Hoagland, The physiological control of judgments of duration: evidence for a chemical clock. J. gen. Psychol, 9, 267–287 (1933).

    Google Scholar 

  71. C. R. Bell and K. A. Provins, Relation between physiological responses to environmental heat and time judgments. J. exp. Psychol, 66, 572–579 (1963).

    PubMed  CAS  Google Scholar 

  72. C. R. Bell, Time estimation and increases in body temperature. J. exp. Psychol, 70, 232–234 (1965).

    PubMed  CAS  Google Scholar 

  73. P. Pátkai, Inter individual differences in diurnal variations in alertness, per formance and adrenaline excretion. Acta physiol. scand., 81, 35–46 (1971).

    PubMed  Google Scholar 

  74. L. Levi, Physical and mental stress reactions during experimental conditions simulating combat. Försvarsmedicin, 2, 3–8 (1966).

    Google Scholar 

  75. F. Halberg, Some physiological and clinical aspects of 24-hour periodicity. J.–Lancet (Minneapolis), 73, 20–32 (1953).

    CAS  Google Scholar 

  76. F. Halberg, E. Halberg, C. P. Barnum and J. J. Bittner, in: Photoperiodism and Related Phenomena in Plants and Animals, R. B. Withrow (ed.) (American Association for the Advancement of Science, Washington), Publ. 55 (1959), pp. 803–878.

    Google Scholar 

  77. R. J. Wurtman and J. Axelrod, Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J. biol. Chem., 241, 2301–2305 (1966).

    PubMed  CAS  Google Scholar 

  78. N. Kleitman and A. Ramsaroop, Periodicity in body temperature and heart rate. Endocrinology, 43, 1–20 (1948).

    PubMed  CAS  Google Scholar 

  79. T. O. Nunan and J. D. Sheehan, The direct effect of temperature on heart rate in exercise. Irish J. med. Sci, 3, 436 (1948).

    Google Scholar 

  80. N. Kleitman and E. Kleitman, Effect of non-24-hour routines of living on oral temperature and heart rate. J. appl. Physiol, 6, 283–291 (1953).

    PubMed  CAS  Google Scholar 

  81. J. S. Howitt, J. S. Balkwill, T. C. D. Whiteside and P. D. G. Whittingham, A preliminary study of flight deck work loads in civil air transport aircraft, U.K. Ministry of Defence (Air Force Dept.), FPRC, 1240 (1966).

    Google Scholar 

  82. J. Rummel, E. Sallin and H. Lipscomb, Circadian rhythms in simulated and manned orbital space flight. Rass. Neurol. Veg., 21, 41–56 (1967).

    PubMed  CAS  Google Scholar 

  83. W. J. Crozier, The distribution of temperature characteristics for biological processes; critical increments for heart rates. J. gen. Physiol., 9, 531–546 (1926).

    PubMed  CAS  Google Scholar 

  84. P. Wylicil and J. M. Weber, Zirkadianrhythmus des Bronchialwiderstandes. Med. Welt (Berlin), 40, 2183–2187 (1969).

    CAS  Google Scholar 

  85. A. von Domarus, Die Bedeutung der Kammerzählung der Eosinophilen für die Klinik. Dtsch. Arch. Klin. Med., 171, 333–358 (1931).

    Google Scholar 

  86. F. Halberg, E. Halberg, D. C. Wargo and M. B. Visscher, Eosinophil levels in dogs with surgically established arteriovenous anastomoses. Amer. J. Physiol., 174, 313–315 (1953).

    PubMed  CAS  Google Scholar 

  87. F. Halberg, M. B. Visscher and J. J. Bittner, Eosinophil rhythm in mice: range of occurrence; effects of illumination, feeding and adrenalectomy. Amer. J. Physiol, 174, 109–122 (1953).

    PubMed  CAS  Google Scholar 

  88. F. Halberg, H. A. Zander, M. W. Houglum and H. R. Mühlemann, Daily variations in tissue mitoses, blood eosinophils and rectal temperatures of rats. Amer. J. Physiol, 177, 361–366 (1954).

    PubMed  CAS  Google Scholar 

  89. G. Pincus, Recent Progress in Hormone Research, Vol. I, pp. 123–141 (Academic Press, New York, 1947).

    Google Scholar 

  90. R. P. Doe, E. B. Flink and M. G. Goodsell, Relationship of diurnal variation in 17-hydroxycorticosteroid levels in blood and urine to eosinophils and electrolyte excretion. J. clin. Endocr., 16, 196–206 (1956).

    PubMed  CAS  Google Scholar 

  91. R. D. Gordon, J. Spinks, A. Dulmanis, B. Hudson, F. Halberg and F. C. Bartter, Amplitude and phase relations of several circadian rhythms in human plasma and urine: demonstration of rhythm for tetrahydrortisol and tetra– hydrocorticosterone. Clin. Sci, 35, 307–324 (1968).

    PubMed  CAS  Google Scholar 

  92. F. Halberg, E. Halberg and R. J. Gully, Effect of modifications of the daily routine in healthy subjects and in patients with convulsive disorder. Epilepsia, Ser. 3, 2, 150 (1953).

    Google Scholar 

  93. A. G. Hills, P. H. Forsham and C. A. Finch, Changes in circulating leucocytes induced by the administration of pituitary adrenocorticotrophic hormone (ACTH) in man. Blood, 3, 755–768 (1948).

    PubMed  CAS  Google Scholar 

  94. F. Halberg, S. L. Cohen and E. B. Flink, Two new tools for the diagnosis of adrenal cortical dysfunction. J. Lab. clin. Med., 38, 817 (1951).

    Google Scholar 

  95. F. Halberg, M. B. Visscher, E. B. Flink, K. Berge and F. Bock, Diurnal rhythmic changes in blood eosinophil levels in health and in certain diseases. J.–Lancet, 71, 312–319 (1951).

    PubMed  CAS  Google Scholar 

  96. F. Halberg and I. H. Kaiser, Lack of physiologic eosinophil rhythm during advanced pregnancy of a patient with Addison’s Disease. Acta endocr. (Kbh.), 16, 227–232 (1954).

    CAS  Google Scholar 

  97. H. D. Kaine, H. S. Seltzer and J. W. Conn, Mechanism of diurnal eosinophil rhythm in man. J. Lab. clin. Med., 45, 247–252 (1955).

    PubMed  CAS  Google Scholar 

  98. D. H. Nelson, A. A. Sandberg, J. G. Palmer and F. H. Tyler, Blood levels of 17-hydroxycorticosteroids following the administration of adrenal steroids and their relation to levels of circulating leucocytes. J. Clin. Invest., 31, 843–849 (1952).

    PubMed  CAS  Google Scholar 

  99. G. W. G. Sharp, Reversal of diurnal leucocyte variations in man. J. Endocr., 21, 107–114 (1960).

    Google Scholar 

  100. G. W. G. Sharp, The effect of light on diurnal leucocyte variations. J. Endocr., 21, 213–218 (1960).

    Google Scholar 

  101. L. J. Phillips and L. J. Berry, Hormonal control of mouse liver phosphenolp-yruvate carboxykinase rhythm. Amer. J. Physiol, 219, 697–701 (1970).

    PubMed  CAS  Google Scholar 

  102. Ira B. Black and D. J. Reis, Cholinergic regulation of hepatic tyrosine transaminase activity. J. Physiol, 213, 421–433 (1971).

    PubMed  CAS  Google Scholar 

  103. Z. K. Cooper, Mitotic rhythm in human epidermis. J. Invest. Derm., 2, 289–300 (1939).

    Google Scholar 

  104. A. C. Broders and W. B. Dublin, Rhythmicity of mitosis in epidermis of human beings. Proc. Mayo Clin., 14, 423–425 (1939).

    Google Scholar 

  105. L. E. Scheving, Mitotic activity in human epidermis. Anat. Rec., 127, 363 (1957).

    Google Scholar 

  106. L. B. Fisher, The diurnal mitotic rhythm in the human epidermis. Brit. J. Derm., 80, 75–80 (1968).

    Google Scholar 

  107. A. M. Mauer, Diurnal variation of proliferative activity in the human bone marrow. Blood, 26, 1–7 (1965).

    PubMed  CAS  Google Scholar 

  108. Y. A. Romanov and V. P. Rybakov, Duration of mitosis and diurnal rhythm of mitotic activity. Bull exp. Biol Med. U.S.S.R., 70, 934–936 (1970).

    Google Scholar 

  109. H. R. Mühlemann, T. M. Marthaler and P. Loustalot, Daily variations in mitotic activity of adrenal cortex, thyroid and oral epithelium of the rat. Proc. Soc. Exp. Biol. (N.Y.), 90, 467–468 (1955).

    Google Scholar 

  110. F. Halberg, J. H. Galicich, F. Ungar and L. A. French, Circadian rhythmic pituitary adrenocorticotropic activity, renal temperature and pinnal mitosis of starving, dehydrated C mice. Proc. Soc. Exp. Biol (N.Y.), 118, 414–419 (1965).

    CAS  Google Scholar 

  111. F. Halberg, Y. L. Tong and E. A. Johnson, Circadian system phase—an aspect of temporal morphology; procedures and illustrative examples, in: The Cellular Aspects of Biorhythms, H. von Mayersbach (ed.), Symposium on Rhythmic Research, VIIIth International Cong. Anat., Wiesbaden, 1965 (Springer-Verlag, Berlin, 1967).

    Google Scholar 

  112. W. S. Bullough, The energy relations of mitotic activity. Biol Rev., 27, 133–168 (1952).

    CAS  Google Scholar 

  113. W. S. Bullough, Stress and epidermal mitotic activity. I. The effects of the adrenal hormones. J. Endocr., 8, 265–274 (1952).

    PubMed  CAS  Google Scholar 

  114. W. S. Bullough and E. B. Laurence, The role of glucocorticoid hormones in the control of epidermal mitosis. Cell Tiss. Kinet., 1, 5–10 (1968).

    CAS  Google Scholar 

  115. F. Halberg and R. B. Howard, 24-hour periodicity and experimental medicine. Postgrad. Med., 24, 349–358 (1958).

    PubMed  CAS  Google Scholar 

  116. R. H. Clark and B. L. Baker, Effect of adrenalectomy on mitotic proliferation of gastric epithelium. Proc. Soc. exp. Biol, N.Y., 111, 311–315 (1962).

    PubMed  CAS  Google Scholar 

  117. J. M. Brown and R. J. Berry, The relationship between diurnal variation of the number of cells in mitosis and of the number of cells synthesizing DNA in the epithelium of the hamster cheek pouch. Cell Tiss. Kinet., 1, 23–33 (1968).

    CAS  Google Scholar 

  118. F. Halberg, Periodicity analysis: a potential tool for biometeorologists. Int. J. Biomet., 7, 167–191 (1963).

    Google Scholar 

  119. J. F. Sassin, D. G. Parker, J. W. Mace, R. W. Godin, L. C. Johnson and L. G. Rossman, Human growth hormone release: relation to slow-wave sleep and sleep-waking cycles. Science, 165, 513–515 (1969).

    PubMed  CAS  Google Scholar 

  120. T. Litman, F. Halberg, Ellis and J. J. Bittner, Pituitary growth hormone and mitoses in immature mouse liver, Endocrinology, 62, 361–365 (1958).

    PubMed  CAS  Google Scholar 

  121. L. E. Scheving and J. J. Chiakulas, Effect of hypophysectomy on the 24-hour mitotic rhythm of corneal epithelium in Urodele larvae. J. exp. Zool., 149, 39–43 (1962).

    PubMed  CAS  Google Scholar 

  122. L. K. Romanova, Labor and diurnal rhythm of mitotic activity of the cells of the interalveolar septa of the lungs in hypophysectomized rats. Bull. exp. Biol. Med., 62, 1040–1042 (1966).

    Google Scholar 

  123. F. Halberg and C. P. Barnum, Continuous light or darkness and circadian periodic mitosis and metabolism in C and D3 mice. Amer. J. Physiol., 201, 227–230 (1961).

    PubMed  CAS  Google Scholar 

  124. M. Garcia-Sainz and F. Halberg, Mitotic rhythms in human cancer, revaluated by electronic computer programs—evidence for chronopathology. J. Nat. Cancer Inst., 37, No. 3, 279–292 (1966).

    PubMed  CAS  Google Scholar 

  125. J. D. Rosenbaum, B. C. Ferguson, R. K. Davis and E. C. Rossmeisl, The influence of cortisone upon the diurnal rhythm of renal excretory function. J. Clin. Invest., 31, 507–520 (1952).

    PubMed  CAS  Google Scholar 

  126. L. A. de Vries, S. P. ten Holt, J. J. van Daatselaar, A. Mulder and J. G. G. Borst, Characteristic renal excretion patterns in response to physiological, pathological and pharmacological stimuli. Clin. Chim. Acta, 5, 915–937 (1960).

    PubMed  Google Scholar 

  127. F. C. Bartter, C. S. Delea and F. Halberg, A map of blood and urinary changes related to circadian variations in adrenal cortical function in normal subjects. Ann. N.Y. Acad. Sci, 98, 969–983 (1962).

    PubMed  CAS  Google Scholar 

  128. O. Garrod and R. A. Burston, The diuretic response to ingested water in Addison’s disease and panhypopituitarism and the effect of cortisone thereon. Clin. Sci, 11, 113–128 (1952).

    PubMed  CAS  Google Scholar 

  129. J. D. Rosenbaum, S. Papper and M. M. Ashley, Variations in renal excretion of sodium independent of change in adrenocortical hormone dosage in patients with Addison’s disease. J. Clin. Endocr., 15, 1459–1474 (1955).

    PubMed  CAS  Google Scholar 

  130. G. W. Liddle, Analysis of circadian rhythms in human adrenocortical secretory activity. Arch, intern. Med., 117, 739–743 (1966).

    CAS  Google Scholar 

  131. L. G. Wesson, Electrolyte excretion in relation to diurnal cycles of renal function; Medicine (Baltimore), 43, 547–592 (1964).

    Google Scholar 

  132. T. F. Frawley, The role of the adrenal cortex in glucose and pyruvic acid metabolism in man, including the use of intravenous hydrocortisone in acute hypoglycaemia. Ann. N.Y. Acad. Sci., 61, 464–493 (1955).

    PubMed  CAS  Google Scholar 

  133. S. H. Ingbar, E. H. Kass, C. H. Burnett, A. S. Relman, B. A. Burrows and J. H. Sisson, The effects of ACTH and cortisone on the renal tubular transport of uric acid, phosphorus and electrolytes in patients with normal renal and adrenal function. J. lab. clin. Med., 38, 533–541 (1951).

    PubMed  CAS  Google Scholar 

  134. J. N. Mills and S. Thomas, The acute effect of adrenal hormones and carbohydrate metabolism upon plasma phosphate and potassium concentrations in man. J. Endocr., 16, 164–179 (1957).

    PubMed  CAS  Google Scholar 

  135. J. N. Mills and S. Thomas, The influence of adrenal corticoids on phosphate and glucose exchange in muscle and liver in man. J. Physiol. (Lond.), 148, 227–239 (1959).

    CAS  Google Scholar 

  136. J. C. Laidlaw, J. F. Dingman, W. C. Arom, J. T. Finkenstaedt and G. W. Thorn, Comparison of the metabolic effects of cortisone and hydrocortisone in man. Ann. N.Y. Acad, Sci, 61, 315–323 (1955).

    CAS  Google Scholar 

  137. J. N. Mills and S. Thomas, The acute effects of cortisone and Cortisol upon renal function in man. J. Endocr., 17, 41–53 (1958).

    PubMed  CAS  Google Scholar 

  138. R. S. Goldsmith, A. W. Siemsen, A. D. Mason, Jr. and M. Forland, Primary role of plasma hydrocortisone concentration in the regulation of the normal forenoon pattern of urinary phosphate excretion. J. Clin. Endocr., 25, 1649–1659 (1965).

    PubMed  CAS  Google Scholar 

  139. F. Bartter and P. Fourman, The different effects of aldosterone-like steroids and hydrocortisone-like steroids on urinary excretion of potassium and acid. Metabolism, 11, 6–20 (1962).

    PubMed  CAS  Google Scholar 

  140. J. N. Mills, S. Thomas and K. S. Williamson, The effects of intravenous aldosterone and hydrocortisone on the urinary electrolytes of the recumbent human subject. J. Physiol. (Lond.), 156, 415–423 (1961).

    CAS  Google Scholar 

  141. M. J. Imrie, J. N. Mills and K. S. Williamson, Circadian variations in renal and adrenal function: are they connected? Mem. Soc. Endocr., 13, 3–13 (1963).

    Google Scholar 

  142. E. B. Flink and R. P. Doe, Effect of sudden time displacement by air travel on synchronization of adrenal function. Proc. Soc. Exp. Biol. N.Y., 100, 498–501 (1959).

    CAS  Google Scholar 

  143. P. J. Martel, G. W. G. Sharp, S. A. Slorach and H. J. Vipond, A study of the roles of adrenocortical steroids and glomerular filtration rate in the mechanism of the diurnal rhythm of water and electrolyte excretion. J. Endocr., 24, 159–169 (1962).

    PubMed  CAS  Google Scholar 

  144. P. R. Lewis and M. C. Lobban, Patterns of electrolyte excretion in human subjects during a prolonged period of life on a 22-hour day. J. Physiol. (Lond.), 133, 670–680 (1956).

    CAS  Google Scholar 

  145. P. R. Lewis and M. C. Lobban, The effects of prolonged periods of life on abnormal time routines upon excretory rhythms in human subjects. Quart. J. exp. Physiol., 42, 356–371 (1957).

    PubMed  CAS  Google Scholar 

  146. D. T. Krieger, J. Kreuzer and F. A. Rizzo, Constant light: effect on circadian pattern and phase reversal of steroid and electrolyte levels in man. J. Clin. Endocr., 29, 1634–1638 (1969).

    PubMed  CAS  Google Scholar 

  147. H. W. Simpson, Studies on the daily rhythm of the adrenal cortex, Ph.D. Thesis, University of Glasgow (1965).

    Google Scholar 

  148. R. T. W. L. Conroy, A. L. Elliott and J. N. Mills, Circadian excretory rhythms in night workers. Brit. J. Industr. Med., 27, 356–362 (1970).

    PubMed  CAS  Google Scholar 

  149. M. J. Imrie, J. N. Mills and K. S. Williamson, The renal action of small doses of Cortisol at night. J. Endocr., 27, 289–292 (1963).

    PubMed  CAS  Google Scholar 

  150. R. I. S. Bayliss, Ciba Foundation Colloquia on Endocrinology, 8, 649 (discussion) (1955).

    Google Scholar 

  151. J. N. Mills and S. W. Stanbury, Persistent 24-hour renal excretory rhythm on a12-hour cycle of activity. J. Physiol. (Lond.), 117, 22–37 (1952).

    CAS  Google Scholar 

  152. J. N. Mills and S. Thomas, Diurnal excretory rhythms in a subject changing from night to day work. J. Physiol. (Lond.), 137, 65–66P (1957).

    Google Scholar 

  153. Ann L. Elliott, J. N. Mills, D. S. Minors and J. M. Waterhouse, The effect of real and simulated time zone shifts upon the circadian rhythms of body temperature, plasma 11-hydroxycorticosteroids and renal excretion in human subjects. J. Physiol. (Lond.), 221, 227–257 (1972).

    CAS  Google Scholar 

  154. C. T. Nichols and F. H. Tyler, Diurnal variation in adrenal cortical function. Ann. Rev. Med., 18, 313–324 (1967).

    PubMed  CAS  Google Scholar 

  155. F. Ceresa, A. Angeli, G. Boccuzzi and G. Molino, Once-a-day neurally stimulated and basal ACTH secretion phases in man and their response to corticoid inhibition. J. clin. Endocr., 29, 1074–1082 (1969).

    PubMed  CAS  Google Scholar 

  156. D. T. Krieger, W. Allen, F. Rizzo and H. P. Krieger, Characterization of the normal temporal pattern of plasma corticosteroid levels. J. Clin. Endocrinol., 32, 266–284 (1971).

    CAS  Google Scholar 

  157. L. Hellman, F. Nakada, J. Curti, E. D. Weitzman, J. Kream, H. Roffwarg, S. Ellman, D. K. Fukushima and T. F. Gallagher, Cortisol is secreted episodically by normal man. J. clin. Endocr., 30, 411–422 (1970).

    PubMed  CAS  Google Scholar 

  158. E. D. Weitzman, D. Fukushima, C. Nogeire, H. Roffwarg, T. F. Gallagher and L. Hellman, Twenty-four hour pattern of the episodic secretion of Cortisol in normal subjects. J. clin. Endocr., 33, 14–22 (1971).

    PubMed  CAS  Google Scholar 

  159. H. Demura, C. D. West, C. A. Nugent, K. Nakagawa and F. H. Tyler, A sensitive radioimmunoassay for plasma ACTH levels. J. clin. Endocr., 26, 1297–1302 (1966).

    PubMed  CAS  Google Scholar 

  160. S. A. Berson and R. S. Yalow, Radioimmunoassay of ACTH in plasma. J. clin. Invest, 47, 2725–2751 (1968).

    PubMed  CAS  Google Scholar 

  161. R. L. Ney, N. Shimizu, W. E. Nicholson, D. P. Island and G. W. Liddle, Correlation of plasma ACTH concentration with adrenocortical response in normal human subjects, surgical patients, and patients with Cushing’s Disease. J. clin. Invest., 42, 1669–1677 (1963).

    PubMed  CAS  Google Scholar 

  162. G. M. Besser, D. R. Cullen, W. J. Irvine and J. Landon, Plasma corticotrophin levels in primary and secondary adrenocortical insufficiency. J. Endocr., 43, x-xi (1969).

    PubMed  CAS  Google Scholar 

  163. P. Cheifetz, N. Gaffud and J. F. Dingman, Effects of bilateral adrenalectomy and continuous light on circadian rhythm of corticotropin in female rats. Endocrinology, 82, 1117–1124 (1968).

    PubMed  CAS  Google Scholar 

  164. A. Heusner, Sources of error in the study of diurnal rhythm in energy metabolism, in: Circadian Clocks, J. Aschoff (ed.), Proc. Feldafing Summer School, Sept. 1964 (North-Holland Publishing Co., Amsterdam, 1965).

    Google Scholar 

  165. F. Ungar, In vitro studies of circadian rhythms in hypothalamic-pituitary-adrenal systems. Rass. Neurol. Veg., 21, 57–70 (1967).

    PubMed  CAS  Google Scholar 

  166. F. Ungar and F. Halberg, Circadian rhythm in in vitro response of mouse adrenal to ACTH. Science, 137, 1058–1060 (1962).

    PubMed  CAS  Google Scholar 

  167. F. Ungar, personal communication (1970).

    Google Scholar 

  168. G. W. Clayton, L. Librik, R. L. Gardner and R. Guillemin, Studies on the circadian rhythm of pituitary adrenocorticotropic release in man. J. clin. Endocr, 23, 975–980 (1963).

    PubMed  CAS  Google Scholar 

  169. M. G. White, N. W. Carter, F. C. Rector, D. W. Seldin, S. J. Drewry, J. P. Sandford, J. P. Luby, R. H. Unger, N. M. Caplan, W. Shapiro and S. Eisenerg, Pathophysiology of epidemic St. Louis encephalitis. I. Inappropriate secretion of anti-diuretic hormone. II. Pituitary-adrenal function. III. Cerebral blood flow and metabolism. Ann. Intern. Med., 71, 691–702 (1969).

    PubMed  CAS  Google Scholar 

  170. B. Rüedi, J. Wertheimer, J.-P. Felber and A. Vannotti, Disturbances of plasma Cortisol circadian rhythm and of cortisol-ACTH feedback mechanism in central nervous system diseases. Rass. Neurol. Veg., 21, 199–215 (1967).

    PubMed  Google Scholar 

  171. D. T. Krieger, S. Glick, A. Silverberg and H. P. Krieger, A comparative study of endocrine tests in hypothalamic disease. Circadian periodicity of plasma 11-OHCS levels, plasma 11-OHCS and growth hormone response to insulin hypoglycaemia and metyrapone responsiveness. J. clin. Endocr., 28, 1589–1598 (1968).

    PubMed  CAS  Google Scholar 

  172. B. B. Saxena, G. Leyendecker, W. Chen, H. M. Gandy and R. E. Peterson, Radioimmunoassay of follicle-stimulating (FSH) and luteinizing (LH) hormones by chromatoelectrophoresis. Acta endocr. (Kbh.), Suppl. 142, 185–206 (1969).

    CAS  Google Scholar 

  173. S. M. Glicks and S. Goldsmith, The physiology of growth hormone secretion, in: Growth Hormone, Int. Cong. Series, No. 158, 84–88, Excerpta Medica Foundation, Amsterdam (1967).

    Google Scholar 

  174. K. Takebe, H. Kunita, S. Sawano, Y. Horiuchi and K. Mashimo, Circadian rhythms of plasma growth hormone and Cortisol after insulin. J. clin. Endocr., 29, 1630–1633 (1969).

    PubMed  CAS  Google Scholar 

  175. D. E. Millan, J. J. Deller, G. M. Grodsky and P. M. Forsham, Evaluation of clinical activity of acromegaly by observation of the diurnal variation of serum inorganic phosphate. Metabolism, 17, 966–976 (1968).

    Google Scholar 

  176. T. Lemerchand-Béraud and A. Vannotti, Relationships between blood thyro-trophin level, protein bound iodine and free thyroxine concentration in man under normal physiological conditions. Acta endocr. (Kbh.), 60, 315–326 (1969).

    Google Scholar 

  177. P. W. Nathanielsz, A circadian rhythm in the disappearance of thyroxine from the blood in the calf and the thyroidectomized rat. J. Physiol. (Lond.) 204, 79–90 (1969).

    CAS  Google Scholar 

  178. L. Levi, Sympatho-adrenomedullary and related biochemical reactions during experimentally induced emotional stress, in: Endocrinology and Human Behaviour, R. P. Michael (ed.), Oxford University Press: London, 1968, pp. 200–219.

    Google Scholar 

  179. A. Cession-Fossion, R. Vandermeulen, P. Lefebvre and J. J. Legros, Variations nychthémérales de la catécholaminémie chez l’homme normal au repos. Rev. Méd. Liège, 22, 285–286 (1967).

    PubMed  CAS  Google Scholar 

  180. A. Reinberg, J. Ghata, F. Halberg, P. Gervais, Ch. Abulker, J. Dupont and Cl. Gaudeau, Rhythmes circadiens du pouls, de la pression artérielle, des excrétions urinaires en 17-hydroxycorticostéroides catécholamines et potassium chez l’homme adulte sain, actif et au repos. Ann. Endocr., Paris, 31, 277–287 (1970).

    CAS  Google Scholar 

  181. A. H. Vagnucci, A. P. Shapiro and R. H. Monald, Effects of upright posture on renal electrolyte cycles. J. appl. Physiol., 26, 720–731 (1969).

    PubMed  CAS  Google Scholar 

  182. J. L. Claus-Walker, R. E. Carter, H. S. Lipscomb and C. Vallbona, Daily rhythms of electrolytes and aldosterone excretion in men with cervical spinal cord section. J. clin. Endocr., 29, 300–301 (1969).

    PubMed  CAS  Google Scholar 

  183. J. L. Claus-Walker, R. E. Carter, H. S. Lipscomb and C. Vallbona, Analysis of daily rhythms of adrenal function in men with quadriplegia due to spinal cord section. Paraplegia, 6, 195–207 (1969).

    PubMed  CAS  Google Scholar 

  184. H. Sirota, D. S. Baldwin and H. Villarreal, Diurnal variations of renal function in man. J. clin. Invest., 29, 187–192 (1950).

    PubMed  CAS  Google Scholar 

  185. S. W. Stanbury and A. E. Thomson, Diurnal variations in electrolyte excretion. Clin. Sci, 10, 267–293 (1951).

    PubMed  CAS  Google Scholar 

  186. L. G. Wesson and D. P. Lauler, Diurnal cycle of glomerular filtration rate and sodium and chloride excretion during responses to altered salt and water balance in man. J. clin. Invest., 40, 1967–1977 (1961).

    PubMed  CAS  Google Scholar 

  187. M. Toor, S. Massry, A. I. Katz and J. Agmon, Diurnal variations in the composition of blood and urine of man living in hot climate. Nephron, 2, 334–354 (1965).

    PubMed  CAS  Google Scholar 

  188. J. Anderson, A method for estimating Tm for phosphate in Man. J. Physiol. (Lond.), 130, 268–277 (1955).

    CAS  Google Scholar 

  189. D. Longson, J. N. Mills, S. Thomas and P. A. Yates, Handling of phosphate by the human kidney at high plasma concentrations. J. Physiol. (Lond.), 131, 555–571 (1956).

    CAS  Google Scholar 

  190. H. K. Min, J. E. Jones and E. B. Flink, Circadian variations in renal excretion of magnesium, calcium, phosphorus, sodium, and potassium during frequent feeding and fasting. Fed. Proc., 25, 917–921 (1966).

    PubMed  CAS  Google Scholar 

  191. R. W. Berliner, Renal mechanisms for potassium excretion. Harvey Lect., 55, 141–171 (1960).

    CAS  Google Scholar 

  192. D. A. K. Black, H. E. F. Davies, E. W. Emery and E. G. Wade, Renal handling of radioactive potassium in man. Clin. Sci, 15, 277–283 (1956).

    PubMed  CAS  Google Scholar 

  193. J. N. Mills, The acute response to potassium ingestion. J. Physiol. (Lond.), 128, 47P (1955).

    Google Scholar 

  194. F. A. Harrison, I. R. Monald and K. Olsson, Unilateral renal excretory responses to close arterial infusions in conscious sheep. J. Physiol. (Lond.), 210, 125–127P (1970).

    Google Scholar 

  195. M. Buchsbaum and E. K. Harris, Diurnal variation in serum and urine electrolytes. J. appl. Physiol., 30, 27–35 (1971).

    PubMed  CAS  Google Scholar 

  196. T. Morimoto and K. Shiraki, Circadian variation in circulating blood volume. Jap. J. Physiol., 20, 550–559 (1970).

    CAS  Google Scholar 

  197. S. J. Rune and N. A. Lassen, Diurnal variations in the acid-base balance of blood. Scand.J. Clin. Lab. Invest., 22, 151–156 (1968).

    PubMed  CAS  Google Scholar 

  198. E. S. Barker, R. B. Singer, J. R. Elkington and J. K. Clark, The renal response in man to acute experimental respiratory alkalosis and acidosis. J. clin. Invest., 36, 515–529 (1957).

    PubMed  CAS  Google Scholar 

  199. J. N. Mills, Changes in alveolar carbon dioxide tension by night and during sleep. J. Physiol. (Lon), 122, 66–80 (1953).

    CAS  Google Scholar 

  200. D. Longson and J. N. Mills, The failure of the kidney to respond to respiratory acidosis. J. Physiol (Lond.), 122, 81–92 (1953).

    CAS  Google Scholar 

  201. R. W. Berliner, T.J. Kennedy and J. Orloff, Relationship between acidification of the urine and potassium metabolism. Amer. J. Med., 11, 274–282 (1951).

    PubMed  CAS  Google Scholar 

  202. J. N. Mills and S. W. Stanbury, A reciprocal relationship between K+ and H +excretion in the diurnal excretory rhythm in man. Clin. Sci, 13, 177–186 (1954).

    Google Scholar 

  203. S. Thomas, Effects of change of posture on the diurnal renal excretory rhythms. J. Physiol (Lond.), 148, 489–506 (1959).

    CAS  Google Scholar 

  204. O. Lindan, W. R. Baker, Jr., R. M. Greenway, P. H. King, J. M. Piazza and J. B. Reswick, Metabolic rhythms of the quadriplegic patient. 1. Effect of rhythmic and random feeding and body turning schedule on the hourly excretion pattern of urinary metabolites. Arch. phys. Med., 46, 79–88 (1965).

    PubMed  CAS  Google Scholar 

  205. M. D. Lindheimer, R. C. Lalone and N. G. Levinsky, Evidence that acute increase in glomerular filtration has little effect on sodium excretion in dog unless extracellular volume is expanded. J. clin. Invest., 46, 256–265 (1967).

    PubMed  CAS  Google Scholar 

  206. C. I. Johnston and J. O. Davis, Evidence from cross circulation studies for a humoral mechanism in the natriuresis of saline loading. Proc. Soc. exp. Biol, N.Y., 121, 1058–1062 (1966).

    PubMed  CAS  Google Scholar 

  207. H. E. de Wardener, Control of sodium reabsorption. Brit. Med. J., 3, 611–616 and 676–683 (1969).

    PubMed  Google Scholar 

  208. M. A. Barraclough and I. H. Mills, Effect of bradykinin on renal function. Clin. Sci, 28, 69–74 (1965).

    PubMed  CAS  Google Scholar 

  209. J. R. Gill, Jr., K. L. Melmon, L. Gillespie, Jr. and F. C. Bartter, Bradykinin and renal function in normal man: efects of andrenergic blockade. Amer. J. Physiol, 209, 844–848 (1965).

    PubMed  CAS  Google Scholar 

  210. M. A. Barraclough, N. F. Jones and C. D. Marsden, Effect of angiotensin on renal function in rat. Amer. J. Physiol, 212, 1153–1158 (1967).

    PubMed  CAS  Google Scholar 

  211. M. F. Lockett, Effects of salt loading and haemodilution on the responses of perfused cat kidneys to angiotensin. J. Physiol (Lond), 193, 639–647 (1967).

    CAS  Google Scholar 

  212. E. de Bono and I. H. Mills, Intrarenal monitoring of cardiac output in the regulation of sodium excretion. Lancet, ii, 1027–1032 (1965).

    Google Scholar 

  213. F. C. Rector, Jr., G. Van Giesen, F. Kiil and D. W. Seldin, Influence of expansion of extracellular volume on tubular reabsorption of sodium independent of changes in glomerular filtration rate and aldosterone activity. J. clin. Invest., 43, 341–348 (1964).

    PubMed  CAS  Google Scholar 

  214. R. Lichardus and J. W. Pearce, Evidence for a humoral natriuretic factor released by blood volume expansion. Nature, Lond., 209, 407–409 (1966).

    CAS  Google Scholar 

  215. J. B. Lee and J. F. Ferguson, Prostaglandins and natriuresis: effect of renal prostaglandins on PAH uptake by kidney cortex. Nature, Lond., 222, 1185–1186 (1969).

    CAS  Google Scholar 

  216. F. S. Wright, B. M. Brenner, C. M. Bennett, R. I. Keimowitz, R. W. Berliner, R. W. Schrier, P. J. Verroust, H. E. de Wardener and H. Holzgreve, Failure to demonstrate a hormonal inhibitor of proximal sodium reabsorption. J. clin. Invest 48, 1107–1113 (1969).

    PubMed  CAS  Google Scholar 

  217. M. F. Lockett and C. N. Roberts, Hormonal factors affecting sodium excretion in the rat. J. Physiol (Lond.), 167, 581–590 (1963).

    CAS  Google Scholar 

  218. M. F. Lockett and C. N. Roberts, Some actions of growth hormone on the perfused cat kidney. J. Physiol (Lond.), 169, 879–888 (1963).

    CAS  Google Scholar 

  219. K. F. Ilett and M. F. Lockett, A renally active substance from heart muscle and from blood. J. Physiol (Lond.), 196, 101–109 (1968).

    CAS  Google Scholar 

  220. M. F. Lockett, Hormonal actions of the heart and of lungs on the isolated kidney. J. Physiol (Lond.), 193, 661–669 (1967).

    CAS  Google Scholar 

  221. M. F. Lockett and R. W. Retallack, The influence of heart rate on the secretion of a substance closely resembling the 18-monoacetate of D-aldosterone by the hearts of cats under chloralose anaesthesia. J. Physiol (Lond.), 208, 21–32 (1970).

    CAS  Google Scholar 

  222. M. F. Lockett and R. S. Retallack, The release of a renally active substance by perfused rat hearts. J. Physiol (Lond.), 212, 733–738 (1971).

    CAS  Google Scholar 

  223. M. F. Lockett and R. W. Retallack, The isolation of a substance very closely resembling the 18-mono-acetate of D-aldosterone from the venous blood of activated muscle and from contracting muscle. J. Physiol (Lond.), 204, 435–442 (1969).

    CAS  Google Scholar 

  224. M. F. Lockett, The separation of renal activity from lung and from the venous effluent from perfused lungs. J. Physiol (Lond.), 212, 719–731 (1971).

    CAS  Google Scholar 

  225. J. O. Davis, J. E. Holman, C. C.J. Carpenter, J. Urquhart andj. T. Higgins, An extra-adrenal factor essential for chronic renal sodium retention in presence of increased sodium-retaining hormone. Circulat. Res., 14, 17–31 (1964).

    PubMed  CAS  Google Scholar 

  226. R. Goldman and E. Luchsinger, Relationship between diurnal variations in urinary volume and the excretion of antidiuretic substance. J. clin. Endocr., 16, 28–34 (1956).

    PubMed  CAS  Google Scholar 

  227. J. C. Goodwin, F. A. Jenner, S. E. Slater, The diurnal pattern of excretion of antidiuretic hormone. J. Physiol (Lond.), 196, 112–113P (1968).

    Google Scholar 

  228. T. Zsótér and S. Sebök, Daily variation of antidiuretic substance in the blood serum. Acta Med. Scand., 152, 47–52 (1955).

    PubMed  Google Scholar 

  229. E. Szczepanska, J. Preibisz, K. Drzewiecki and S. Kozlowski, Studies on the circadian rhythm of variations of the blood antidiuretic hormone in humans. Pol med. J., 7, 517–523 (1968).

    CAS  Google Scholar 

  230. H. E. Gunn, Jr., A. L. Unger, D. M. Hume and J. A. Schilling, Human renal transplantation: an investigation of the functional status of the denervated kidney after successful homotransplantation in identical twins. J. Lab. clin. Med., 56, 1–13 (1960).

    Google Scholar 

  231. G. M. Berlyne, N. P. Mallick, Y. K. Seedat, E. C. Edwards, R. Harris and W. M. Orr, Abnormal urinary rhythm after renal transplantation in man. Lancet, ii, 435–436 (1968).

    Google Scholar 

  232. R. McMillan, D. B. Evans and J. G. Lines, Sodium excretion in functioning renal allografts. Brit. J. Surg., 55, 863 (1968).

    PubMed  CAS  Google Scholar 

  233. P. R. Lewis, M. C. Lobban and R. I. Shaw, Patterns of urine flow in human subjects during a prolonged period of life on a 22-hour day. J. Physiol (Lond.), 133, 659–669 (1956).

    CAS  Google Scholar 

  234. F. A. Jenner, J. C. Goodwin, M. Sheridan, I.J. Tauber and M. C. Lobban, The effect of an altered time regime on biological rhythms in a 48-hour periodic psychosis. Brit J. Psychiat., 114, 215–224 (1968).

    PubMed  CAS  Google Scholar 

  235. J. Aschoff, E. Poppel and R. Wever, Circadiane Periodik des Menschen unter dem Einfluss von Licht-Dunkel-Wechseln unterschiedlicher Periode, Pftiigers Arch. ges. Physiol., 306, 58–70 (1969).

    CAS  Google Scholar 

  236. J. Aschoff, U. Gerecke and R. Wever, Phase relationship between the circadian period of activity and the body temperature of humans. Pftiigers. Arch. ges. Physiol., 295, 173–183 (1967).

    CAS  Google Scholar 

  237. P. M. Hahn, T. Hoshizak and W. R. Adey, Biosatellite-III results – circadian rhythms of Macaca nemestrina monkey in biosatellite III. Aerospace Med., 42, 295–304 (1971).

    PubMed  CAS  Google Scholar 

  238. J. N. Mills, S. Thomas and P. A. Yates, Reappearance of renal excretory rhythm after forced disruption. J. Physiol. (Lond.), 125, 466–474 (1954).

    Google Scholar 

  239. R. E. Ornstein, On the experience of time (Penguin, Harmondsworth, 1969).

    Google Scholar 

  240. W. B. Quay, Rhythmic and light induced changes in levels of pineal 5-hydroxy indoles in pigeon (Columba livia). Gen. comp. Endocr., 6, 371–377 (1966).

    PubMed  CAS  Google Scholar 

  241. C. L. Ralph, L. Hedlund and W. A. Murphy, Diurnal cycles of melatonin in bird pineal bodies. Comp. Biochem. Physiol., 22, 591–599 (1967).

    CAS  Google Scholar 

  242. D. G. Klein and J. L. Weller, Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science, 169, 1093–1095 (1970).

    PubMed  CAS  Google Scholar 

  243. R. J. Wurtman and J. Axelrod, 24-Hour rhythm in the content of norepinephrine in the pineal and salivary glands of the rat. Life Sci., 5, 665–669 (1966).

    PubMed  CAS  Google Scholar 

  244. R. A. Cohen, R. J. Wurtman, J. Axelrod and S. H. Snyder, Some clinical, biochemical and physiological actions of the pineal gland. Ann. intern. Med., 61, 1144–1161 (1964).

    PubMed  CAS  Google Scholar 

  245. S. H. Snyder, M. Zweig, J. Axelrod and J. E. Fischer, Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. nat. Acad. Sci., Wash., 53, 301–305 (1965).

    CAS  Google Scholar 

  246. W. B. Quay, Individuation and lack of pineal effect on the rat’s circadian locomotor rhythm. Physiology and Behaviour, 3, 109–118 (1968).

    Google Scholar 

  247. W. B. Quay, Diagnosis of destructive lesions of the pineal; Lancet, ii, 42–44 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Publishing Company Ltd.

About this chapter

Cite this chapter

Mills, J.N. (1973). Transmission Processes Between Clock and Manifestations. In: Mills, J.N. (eds) Biological Aspects of Circadian Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4565-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4565-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4567-1

  • Online ISBN: 978-1-4613-4565-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics