Stability of Helical Nucleic Acids

  • N. R. Kallenbach
Part of the Studies in the Natural Sciences book series (SNS, volume 4)

Abstract

One intensive application of the statistical mechanics of order-disorder transitions has been to the formation or denaturation of helical structure in nucleic acids. The existence of extremely long double-stranded helices in DNA and certain species of RNA leads to a natural replacement of the base-pairs by sites on a one-dimensional lattice capable of interacting with neighboring sites, reducing the statistical mechanical problem to a class related to the one-dimensional Ising model (1). Given a reasonable physical description of the helix nucleation and zippering processes then, it has proven possible to estimate the energetics of helix formation by comparing predicted theoretical transition profiles with experimentally measured curves (2, 3, 4). The denaturation of high molecular weight synthetic or natural helices can be monitored, for example, by the increase in absorbance of a solution of the molecules upon raising the temperature. Typically, abrupt cooperative transitions are observed, which are only slowly or partially reversible in the case of natural DNA’s but fully so in the case of synthetic species (Fig. 1).

Keywords

Sugar Entropy Urea Enthalpy Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A number of general reviews are available: D. Poland and H.A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers. Associated Press, N.Y. 1970. R.M. Wartell and E.W. Montroll Adv. in Chemical Physics XXII, 129 (1972); Yu. S. Lazurkin, M. D. Frank-Komenetsii and E.N. Trifonov, Biopolymers 9, 1253 (1970).Google Scholar
  2. 2.
    D.M. Crothers and B.H. Zimm, J. Mol. Biol. 9, 1 (1964).Google Scholar
  3. 3.
    R.M. Wartell, Biopolymers 11, 745 (1972).CrossRefGoogle Scholar
  4. 4.
    R.D. Blake, Biophysical Chemistry 1, 24 (1973).CrossRefGoogle Scholar
  5. 5.
    A.C. Wang and N.R. Kallenbach, J. Mol. Biol. 62, 591 (1971).CrossRefGoogle Scholar
  6. 6.
    These are summarized in G.L. Cantoni and D.R. Davies, Eds. Procedures in Nucleic Acid Research, Vol. 2 ( Harper and Row, N.Y. ) 1971 ).Google Scholar
  7. 7.
    J.D. Watson and F.H.C. Crick, Nature 171, 737 (1953).CrossRefGoogle Scholar
  8. 8.
    See B.H. Zimm and N.R. Kallenbach, Ann. Revs. Phys. Chem. 13, 171 (1962).CrossRefGoogle Scholar
  9. 9.
    G.S. Manning, Biopolymers 11, 937, 951 (1972). M.T. Record, Biopolymers 5, 975 (1967).CrossRefGoogle Scholar
  10. 10.
    J. Marmur, R. Rownd and C.L. Schildkraut, Prog. Nuc. Acid Research 1, 231 (1963).CrossRefGoogle Scholar
  11. 11.
    L. Levine, J.A. Gordon and W.P. Jencks, Biochemistry 2, 168 (1963).CrossRefGoogle Scholar
  12. 12.
    K.E. Van Holde, J. Brahms and A.M. Michelson, J. Mol. Biol. 12, 726 (1965), M. Leng and G. Felsenfeld, J. Mol. Biol. 15, 455 (1966).CrossRefGoogle Scholar
  13. 13.
    N.R. Kallenbach, J. Mol. Biol. 37, 445 (1968), F. Martin, O.C. Uhlenbeck and P. Doty, J. Mol. Biol. 57m 201 (1971).CrossRefGoogle Scholar
  14. 14.
    M. Eigen and D. Porschke, J. Mol. Biol. 53, 123 (1970), D.W. Appleby and N.R. Kallenbach, Biopolymers 12, 2093 (1973).CrossRefGoogle Scholar
  15. 15.
    C.L. Stevens and G. Felsenfeld, Biopolymers 2, 293 (1964).CrossRefGoogle Scholar
  16. 16.
    F.B. Howard, J. Frazier and H.T. Miles, J. Biol. Chem. 240, 801 (1965).Google Scholar
  17. 17.
    J. M. Rosenberg, N.C. Seeman, J.J.P. Kim, F.L. Suddath, H.B. Nicholas and A. Rich, Nature 243, 150 (1973).CrossRefGoogle Scholar
  18. 18.
    O.E. Bugg, J. Thomas, M. Sundaralingam and S.T. Rao, Biopolymers 10, 175 (1971).CrossRefGoogle Scholar
  19. 19.
    D. Voet and A. Rich, Prog. Nucleic Acid Research and Molecular Biology 10, 183 (1970).CrossRefGoogle Scholar
  20. 20.
    M.J. Lowe and J.A. Schellman, J. Mol. Biol. 65, 91 (1972), J.T. Powell, E.G. Richards and W. Gratzer, Biopolymers 11, 235 (1972).CrossRefGoogle Scholar
  21. 21.
    S.I. Chan and J.H. Nelson, J. Am. Chem. Soc., 91, 168 (1969).CrossRefGoogle Scholar
  22. 22.
    P.O.P. T’so and S.I. Chan, J. Am. Chem. Soc. 86, 4176 (1972), D. Porschke and F. Eggers, Eur. J. Biochem. 26, 490 (1972).Google Scholar
  23. 23.
    R.L. Scruggs, E.K. Achter and P.D. Ross, Biopolymers 11, 1961 (1972).CrossRefGoogle Scholar
  24. 24.
    D. Porschke, private communication (1973).Google Scholar
  25. 25.
    B.H. Zimm and J.K. Bragg, J. Chem. Phys. 11, 526 (1959).CrossRefGoogle Scholar
  26. 26.
    S. Lifson and A. Roig, J. Chem. Phys. 34, 1963 (1961).Google Scholar
  27. 21.
    W.K. Olson and P.J. Flory, Biopolymers 11, 1, 25 (1972).CrossRefGoogle Scholar
  28. 28.
    H. Rubin and N.R. Kallenbach, in preparation.Google Scholar
  29. 29.
    L.D. Inners and G. Felsenfeld, J. Mol. Biol. 50, 373 (1970).CrossRefGoogle Scholar
  30. 30.
    S. Lifson and B.H. Zimm, Biopolymers 1, 15 (1963), S. Lifson, J. Chem. Phys. 40, 3705 (1964).CrossRefGoogle Scholar
  31. 31.
    J.R. Fresco and B.M. Alberts, Proc. Natl. Acad. Sci. U.S. 46, 311 (1960).Google Scholar
  32. 32.
    H. Jacobson and W.H. Stockmayer, J. Chem. Phys. 18, 3209 (1950).Google Scholar
  33. 33.
    S.F. Edwards, in M.S. Green and J.B.V. Fengers, eds. Critical Phenomena, N.B.S. Misc. Publication 273, 225 (1966).Google Scholar
  34. 34.
    C. Truesdell, Ann. Math (II), 46, 144 (1945).CrossRefGoogle Scholar
  35. 35.
    M. Fisher, J. Chem. Phys. 45, 1469 (1966); D. Poland and H.A. Scheraga, ref. 1.CrossRefGoogle Scholar
  36. 36.
    C. Tanford, Physical Chemistry of Macromolecules, Wiley, New York 1961, P. 168.Google Scholar
  37. 37.
    H. Eisenberg and G. Felsenfeld, J. Mol. Biol. 30, 17 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • N. R. Kallenbach
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations