Critical Exponents Below Tc Via Skeleton Graphs (Ising-Like Case)

  • Joseph L. McCauleyJr.
  • Elihu Abrahams
Part of the Studies in the Natural Sciences book series (SNS, volume 4)

Abstract

We will discuss a method of calculating critical exponents in d = 4 – ɛ dimensions below the critical point. Although for T < Tc it is easy to obtain the 0(ɛ) corrections to the Gaussian model by several different approaches1, 2 and very laborious to generate exponents to 0(ɛ2) by any method, we will discuss here only the former case for a one-component classical field (“Ising-like”), our wish being to illustrate how one can use the method of “skeleton graphs” (or in the language of field theory, “fully-renormalized perturbation theory”) to generate critical exponents as a power series in ɛ in the presence of a broken symmetry. We will also show in a transparent way precisely which assumptions lead to Widom’s scaling form of the equation of state and to certain scaling laws for exponents for T < Tc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Brézin, D. J. Wallace, and K. G. Wilson, Phys. Rev. Lett. 29, 591 (1972).CrossRefGoogle Scholar
  2. 2.
    E. Brézin, J. C. LeGuillou and J. Zinn-Justin, “The Approach to Scaling in Renormalized Perturbation Theory,” (Saclay Preprint, 1973) -- see Appendix C.Google Scholar
  3. 3.
    K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).CrossRefGoogle Scholar
  4. 4.
    T. Tsuneto and E. Abrahams, Phys. Rev. Lett. 30, 217 (1973).CrossRefGoogle Scholar
  5. 5.
    M. J. Stephen and E. Abrahams, Phys. Lett. 44A, 85 (1973).Google Scholar
  6. 6.
    Jona-Lasinio, Nuovo Cim. 34, 1790 (1964).CrossRefGoogle Scholar
  7. 7.
    L. P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967).CrossRefGoogle Scholar
  8. 8.
    K. G. Wilson and J. Kogut, “The Renormalization Group and the ɛ Expansion,” (institute for Advanced Study Preprint, 1972).Google Scholar
  9. 9.
    B. Widom, J. Chem. Phys. 43 3898 (1965).CrossRefGoogle Scholar
  10. 10.
    Beyond 0(ɛ2) the non-Parquet graphs must be included.Google Scholar
  11. 11.
    R. B. Griffiths, Phys. Rev. 158, 176 (1967).CrossRefGoogle Scholar
  12. 12.
    This conjecture has recently been verified by J. P. Straley (J. P. Straley — private communication).Google Scholar
  13. 13.
    E. Abrahams and J. McCauley, Jr. — to be published.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Joseph L. McCauleyJr.
    • 1
  • Elihu Abrahams
    • 1
  1. 1.Physics DepartmentRutgers UniversityNew BrunswickUSA

Personalised recommendations