Factors Affecting the Selection of a Template for the Characterization of Multiple DNA-Dependent RIMA Polymerases of Mammalian Tissues

  • Peter H. W. Butterworth
  • Sarah Jane Flint
  • C. James Chesterton
Part of the Basic Life Sciences book series (BLSC, volume 3)

Abstract

The first step in the expression of genetic information in any cell is the production of an RNA transcript from the DNA by the DNA-dependent RNA polymerase. Factors that regulate the expression of certain genes or classes of genes might be expected to act by some direct effect on the transcription apparatus. The general picture that has emerged from a study of gene-expression control in prokaryotes tends to support this thesis. Our understanding of the phenomenon of “polymerase-mediated control” has developed from investigations of bacteriophage infection of Escherichia coli. It is now generally accepted that host E. coli RNA polymerase transcribes at least a part of the phage genome (the “early” regions), whereas a modified host RNA polymerase (in the case of T4) or even a new phage-specified polymerase (as in the case of T7) transcribes the “late” regions (1,2). These observations suggest that the host E. coli RNA polymerase, the modified T4 polymerase, and the new phage-specified polymerase recognize different nucleotide sequences and thus bind to and transcribe from different initial binding sites (promoter sites) on phage DNA. Thus at least one “positive” control mechanism resides in the ability of different polymerase species to recognize different promoter sites.

Keywords

Cellulose Filtration EDTA Polyethylene Glycol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Travers. Nature New Biol 229: 69 (1971).PubMedGoogle Scholar
  2. 2.
    E. K. F. Bautz. In Progress in Nucleic Acid Research and Molecular Biology, Vol. 12, Academic Press, New York, p. 129 (1972).Google Scholar
  3. 3.
    R. G. Roeder and W. J. Rutter. Nature (Lond.) 224: 234 (1969).CrossRefGoogle Scholar
  4. 4.
    C. Kedinger, M. Gniazdowski, J. L. Mandel, Jr., F. Gissinger, and P. Chambon. Biochem. Biophys. Res. Commun. 38: 165 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    R. G. Roeder and W. J. Rutter. Proc. Natl Acad. Sci. (USA) 65: 675 (1970).CrossRefGoogle Scholar
  6. 6.
    C. J. Chesterton and P. H. W. Butterworth. FEBS Letters 12: 301 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    C. J. Chesterton and P. H. W. Butterworth. Europ. J. Biochem. 19: 232 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Kedinger, P. Nuret, and P. Chambon. FEBS Letters 15: 169 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    G. P. Tocchini-Valentini and M. Crippa. Nature (Lond.) 228: 993 (1970).CrossRefGoogle Scholar
  10. 10.
    P. H. W. Butterworth, R. F. Cox, and C. J. Chesterton. Europ. J. Biochem. 23: 229 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    I. Grummt and R. Lindigkeit. Europ. J. Biochem. 36: 244 (1973).Google Scholar
  12. 12.
    V. Vogt. Nature (Lond.) 223: 854 (1969).CrossRefGoogle Scholar
  13. 13.
    J.-P. Dausse, A. Sentenac, and P. Fromageot. Europ. J. Biochem. 31: 394 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    D. C. Hinkle, J. Ring, and M. J. Chamberlin. J. Mol Biol 70: 197 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Weiss, T. R. Live, and C. C. Richardson. J. Biol Chem. 243: 4530 (1968).PubMedGoogle Scholar
  16. 16.
    C. C. Richardson. J. Mol Biol 15: 49 (1966).CrossRefGoogle Scholar
  17. 17.
    H. V. Aposhian and A. Romberg. J. Biol Chem. 237: 519 (1962).PubMedGoogle Scholar
  18. 18.
    J. Paul and R. S. Gilmour. J. Mol Biol 34: 305 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Peter H. W. Butterworth
    • 1
  • Sarah Jane Flint
    • 1
  • C. James Chesterton
    • 2
  1. 1.Department of BiochemistryUniversity College LondonLondonEngland, UK
  2. 2.Department of BiochemistryKing’s College LondonLondonEngland, UK

Personalised recommendations