Quantum Solids and Inelastic Neutron Scattering

  • V. J. Minkiewicz
  • T. A. Kitchens
  • G. Shirane
  • E. B. Osgood


For large molar volume the solids of 4He have the unique feature that, in contrast to normal systems, the average random excursion of an atom from its equilibrium position is a significant fraction (~ 1/3) of the interatomic spacing. The weak interatomic interaction, which is known from measurements on the gas phase, and the light mass combine to produce crystals whose lattice dynamics cannot be described within the context of classical theory. For these reasons helium crystals are expected to be ideal systems with which one can test the subtle predictions of the quantum mechanical many-body theory of crystal dynamics.


Phonon Spectrum Inelastic Neutron Conventional Theory Waller Factor Solid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.J. Minkiewicz, T.A. Kitchens, F.P. Lipschultz, and G. Shirane, Phys. Rev. 174, 267 (1968);ADSCrossRefGoogle Scholar
  2. F.P. Lipschultz, V.J. Minkiewicz, T.A. Kitchens, G. Shirane, and R. Nathans, Phys. Rev. Lett. 19, 1307 (1967).ADSCrossRefGoogle Scholar
  3. 2.
    R.A. Reese, S.K. Sinha, T.O. Brun, S.K. Sinha, and C.R. Telford, Phys. Rev. A 3, 1688 (1971);ADSCrossRefGoogle Scholar
  4. T.O. Brun, S.K. Sinha, C.A. Swenson, and C.R. Tilford, in Neutron and Inelastic Scattering, International Atomic Energy Agency, Vienna (1968), Vol. VI.Google Scholar
  5. 3.
    E.B. Osgood, V.J. Minkiewicz, T.A. Kitchens, and G. Shirane, Phys. Rev. A 5, 1537 (1972).ADSCrossRefGoogle Scholar
  6. 4.
    V.J. Minkiewicz, T.A. Kitchens, G. Shirane, E.B. Osgood, Phys. Rev. (to be published).Google Scholar
  7. 5.
    T.A. Kitchens, G. Shirane, V.J. Minkiewicz, and E.B. Osgood, Phys. Rev. Lett, (to be published).Google Scholar
  8. 6.
    H.R. Glyde, J. Low Temp. Phys. 3, 559 (1970), and private communication based on H.R. Glyde, Can. J. Phys. 49, 761 (1971).ADSCrossRefGoogle Scholar
  9. 7.
    N.R. Werthamer, Phys. Rev. Lett. 28, 1102 (1972).ADSCrossRefGoogle Scholar
  10. 8.
    V. Ambegaokar, J.M. Conway, and G. Baym, J. Phys. Chem. Solids Suppl. 1, 261 (1965); in Proc. Intern. Conf. Lattice Dynamics, Pergamon, New York (1965).Google Scholar
  11. 9.
    G. Placzek, Phys. Rev. 86, 377 (1952).ADSMATHCrossRefGoogle Scholar
  12. 10.
    B.J. Alder, W.R. Gardner, J.K. Hoffer, N.E. Phillips, and D. A. Young, Phys. Rev. Lett. 21, 732 (1966);ADSCrossRefGoogle Scholar
  13. J.K. Hoffer, Ph.D. Thesis, University of California, Berkeley, 1968, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • V. J. Minkiewicz
    • 1
  • T. A. Kitchens
    • 2
  • G. Shirane
    • 2
  • E. B. Osgood
    • 3
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Brookhaven National LaboratoryUptonUSA
  3. 3.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations