Direct Evidence for the Coexistence of Superconductivity and Ferromagnetism

  • R. D. Taylor
  • W. R. Decker
  • D. J. Erickson
  • A. L. Giorgi
  • B. T. Matthias
  • C. E. Olsen
  • E. G. Szklarz

Abstract

In 1958 Matthias et al.1 proposed the simultaneous occurrence of superconductivity and ferromagnetism in certain substituted, cubic Laves-phase, intermetallic compounds. These compounds are generally of the type Ce1−xRxRu2, where R represents a magnetic rare earth. Their conclusion was based on the slow depression of the superconducting transition temperature T c (x) of CeRu2 upon addition of RRu2, the depression of the ferromagnetic ordering temperature θc(x) of RRu2 upon addition of CeRu2, and the intersection ofT c (x) and θ c (x) at some finite temperature and rare earth concentration x*. The phase diagram for the system Ce1−x GdxRu2 is shown in Fig. 1. Note that in the neighborhood of x = 0.13 the two critical curves intersect at about 4°K. The solid lines in Fig. 1 were obtained by low-field magnetic susceptibility measurements.2,3 The temperature at the midpoint of the transition to diamagnetism is taken as T c ; below T c diamagnetic shielding masks any magnetic behavior of the sample. Values of θC for the Gd-rich sample are determined from their paramagnetic behavior at higher T. The dashed lines are extrapolations assuming that the concentration dependences of T c (x) and θ c (x) persist above and below x*, respectively. One therefore asks whether samples in the concentration region about x* are either superconducting or ferromagnetic, or both, at temperatures below the dashed lines of Fig. 1. T c transitions have been observed1,4 for certain systems with magnetic rare earth concentrations slightly above their x*. Recently θC values below T c for x < x* were inferred3 from susceptibility data taken above T c .

Keywords

Furnace Depression Argon Coherence CeRu 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett. 1, 449 (1958).ADSCrossRefGoogle Scholar
  2. 2.
    M. Wilhelm and B. Hillenbrand, Z. Naturforsch. 26a, 141 (1971); J. Phys. Chem. Solids 31, 559 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    M. Peter, P. Donze, O. Fischer, A. Junod, J. Ortelli, A. Treyvaud, E. Walker, M. Wilhelm, and B. Hillenbrand, Helv. Phys. Acta 44, 345 (1971).Google Scholar
  4. 4.
    R.M. Bozorth, D.D. Davis, and A.J. Williams, Phys. Rev. 119, 1570 (1961);ADSCrossRefGoogle Scholar
  5. B. Hillenbrand and M. Wilhelm, Phys. Lett. 31 A, 448 (1970).CrossRefGoogle Scholar
  6. 5.
    N.E. Phillips and B.T. Matthias, Phys. Rev. 121, 105 (1961).ADSCrossRefGoogle Scholar
  7. 6.
    L.J. Williams, W.R. Decker, and D.K. Finnemore, Phys. Rev. B 2, 1287 (1970).ADSCrossRefGoogle Scholar
  8. 7.
    V.L. Ginzburg, Soviet Phys.—JETP4, 153 (1957);Google Scholar
  9. G.F. Zharkov, Soviet Phys.—JETP 7, 286 (1958).MATHGoogle Scholar
  10. 8.
    L.P. Gorkov and A.I. Rusinov, Soviet Phys.—JETP 19, 922 (1964).Google Scholar
  11. 9.
    G. Rupp (private communication, B. Hillenbrand).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. D. Taylor
    • 1
  • W. R. Decker
    • 1
  • D. J. Erickson
    • 1
  • A. L. Giorgi
    • 1
  • B. T. Matthias
    • 1
  • C. E. Olsen
    • 1
  • E. G. Szklarz
    • 1
  1. 1.Los Alamos Scientific Laboratory of the University of CaliforniaLos AlamosUSA

Personalised recommendations