Generation of Ultraviolet and Vacuum Ultraviolet Radiation



The paper describes the use of nonlinear optical techniques for the generation of coherent radiation at ultraviolet, vacuum ultraviolet, and soft x-ray wavelengths. Mixtures of metal vapors and inert gases, and other mixed gas systems, allow generation to regions of the spectrum where nonlinear optical crystals are opaque; and also allow generation at high incident power and energy densities. Progress is reported on programs aimed at efficient conversion from 1.064µ to 3547 Å, and from 3547 Å to 1182 Å. To date, the shortest wavelength generated by this technique is 887 Å. Theoretical considerations indicate that generation into the soft x-ray region should be possible. Using 1182 Å radiation, a holographic grating with a fringe spacing of 836 Å has been constructed and examined on an electron microscope.


Heat Pipe Coherence Length Dispersive Medium Metal Vapor High Order Harmonic Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, and R. V. Khokhlov, JETP Letters 2, 141 (1965).ADSGoogle Scholar
  2. 2.
    R. W. Wallace, Opt. Commun. 4, 316 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. J. Bradley, J. V. Nicholas, and J. R. D. Shaw, Appl. Phys. Letters 19, 172 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Akmanov, S. A. Akhmanov, B. V. Zhdanov, A. I. Kovrigin, N. K. Podsotskaya, and R. V. Khokhlov, ZhETF Pis. Red. 10, 244 (1969).ADSGoogle Scholar
  5. 5.
    S. E. Harris and R. B. Miles, Appl. Phys. Letters 19, 385 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    J. F. Young, G. C. Bjorklund, A. H. Kung, R. B. Miles, and S. E. Harris, Phys. Rev. Letters 27, 1551 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    A. H. Kung, J. F. Young, and S. E. Harris, Appl. Phys. Letters 22, 301 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. Miles and S. E. Harris, IEEE J. Quant. Elect. QE-9, 470 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    C. R. Vidal and J. Cooper, J. Appl. Phys. 40,3370 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    C. R. Vidal and M. N. Hessel, J. Appl. Phys. 43, 2776 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    A. H. Kung, J. F. Young, G. C. Bjorklund, and S. E. Harris, Phys. Rev. Letters 29, 985 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    J. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    S. E. Harris, Phys. Rev. Letters 31, 341 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    J. B. DeVelis, G. B. Parrent, Jr., and B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    J. W. Goodman, private communication.Google Scholar
  16. 16.
    J. W. Goodman and R. W. Lawrence, Appl. Phys. Letters 11, 77 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.Microwave LaboratoryStanford UniversityStanfordUSA

Personalised recommendations