Skip to main content

Observation of Slow Velocities and Self-Steepening of Optical Pulses Described by Adiabatic Following

  • Chapter
Laser Spectroscopy

Abstract

The observation and the theoretical explanation of phenomena which accompany near-resonant pulse propagation in atomic vapors are described. These phenomena bridge the gap between linear dispersion theory, which applies in the far wings of lines, and strictly resonant effects characteristic of self-induced transparency. The results indicate that very low propagation velocities and strong pulse reshaping are not unique to transparency situations.

Short pulses of narrow-line, low-intensity, dye laser light nearly resonant with the Zeeman split 2P1/2 resonance line (7948 Å) of rubidium were observed to propagate through the dilute vapor as slowly as c/14 [1]. Low-intensity pulses were essentially undistorted by passage through the vapor. High-intensity pulses not only propagated slowly but were self-steepened in the process [2]. Their risetimes changed from typically 4 nsec to less than 1 nsec and complicated envelope shapes developed.

All observations are very well accounted for by the adiabatic following model in which the pseudomoments of the atoms remain closely aligned along the effective field of the laser light. At low intensity, the Rabi precession frequency is very small compared to the frequency difference between the light and the resonance line. In this limit, the approximation is equivalent to linear dispersion theory. The low-level pulse velocity is vg> = δω/δk, in good agreement with experiment. At high intensity, adiabatic following predicts a nonlinear dielectric response demonstrated earlier in self-focusing [3] and self-defocusing [4] experiments. This leads to two self-steepening mechanisms, which have familiar analogs in other nonlinear optics media: i) an intensity dependence of the pulse velocity, ii) self-phase modulation together with strong group velocity dispersion. The numerical integration of the resulting equations gives excellent quantitative agreement with observations. Further, it indicates optical shock formation on the leading edge of the pulses.

Work of this author was partially supported by ONR under Contract No. N00014-70-C-0187.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Grischkowsky, Phys. Rev. A (to be published).

    Google Scholar 

  2. D. Grischkowsky, Eric Courtens, and J. A. Armstrong (to be published)

    Google Scholar 

  3. D. Grischkowsky, Phys. Rev. Lett. 24, 866 (1970).

    Article  ADS  Google Scholar 

  4. D. Grischkowsky and J. A. Armstrong; Phys. Rev. A 6, 1566 (1972).

    Article  ADS  Google Scholar 

  5. J. A. Carruthers and T. Bieber, J. Appl. Phys. 40, 426 (1969).

    Article  ADS  Google Scholar 

  6. A. Frova, M. A. Duguay, C. G. B. Garrett and S. L. McCall, J. Appl. Phys. 40, 3969 (1969).

    Article  ADS  Google Scholar 

  7. F. R. Faxvog, C. N. Y. Chow, T. Bieber and J. A. Carruthers, Appl. Phys. Lett. 17, 192 (1970).

    Article  ADS  Google Scholar 

  8. L. Casperson and A. Yariv, Phys. Rev. Lett. 26, 293 (1971).

    Article  ADS  Google Scholar 

  9. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  10. R. E. Slusher and H. M. Gibbs, Phys. Rev A 5, 1634 (1972).

    Article  ADS  Google Scholar 

  11. L. A. Ostrovskii, Zh. Eksp. Teor. Fiz. 51, 1189 (1966) [Sov. Phys. JETP 24, 797 (1967)].

    Google Scholar 

  12. R. J. Joenk and R. Landauer, Phys. Lett. 24A, 228 (1967).

    Article  Google Scholar 

  13. F. DeMartini, C. H. Townes, T. K. Gustafson and P. L. Kelley, Phys. Rev. 164, 312 (1967).

    Article  ADS  Google Scholar 

  14. T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz and P. L. Kelley, Phys. Rev. 177, 306 (1969).

    Article  ADS  Google Scholar 

  15. V. M. Arutyunyan, N. N. Badalyan, V. A. Iradyan and M. E. Movsesyan, Zh. Eksp. Teor. Fiz. 58, 37 (1970) [Sov. Phys. JETP 31, 22 (1970)].

    Google Scholar 

  16. B. B. Kadomtsev and V. I. Karpman, Usp. Fiz. Nauk 103, 193 (1971) [Sov. Phys. USPEKHI 14, 40 (1971)].

    MathSciNet  Google Scholar 

  17. B. Ya. Zel’dovich and I. I Sobel’man, ZhETF Pis. Red. 13, 182 (1971) [JETP Lett. 13, 129 (1971)].

    ADS  Google Scholar 

  18. F. Shimizu, IEEE J. Quantum Electron 8, 851 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Courtens and A. Szoke, Phys. Lett. 28A, 226 (1968).

    Article  Google Scholar 

  20. I. I. Rabi, N. F. Ramsey and J. Schwinger, Rev. Mod. Phys. 26, 167 (1954).

    Article  ADS  MATH  Google Scholar 

  21. Ch’en Shang-Yi, Phys. Rev. 58,884 (1940).

    Article  ADS  Google Scholar 

  22. L. Brillouin, “Wave Propagation and Group Velocity,” (Academic Press, New York, 1960), p. 119.

    MATH  Google Scholar 

  23. E. O. Schulz-Dubois, Proc. IEEE 57, 1748 (1969).

    Article  Google Scholar 

  24. C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).

    Article  ADS  Google Scholar 

  25. M. D. Crisp, Phys. Rev. A 4, 2104 (1971).

    Article  ADS  Google Scholar 

  26. M. J. Lighthill, Proc. Roy. Soc. A299, 28 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Grischkowsky, D., Courtens, E., Armstrong, J.A. (1974). Observation of Slow Velocities and Self-Steepening of Optical Pulses Described by Adiabatic Following. In: Brewer, R.G., Mooradian, A. (eds) Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4517-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4517-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4519-0

  • Online ISBN: 978-1-4613-4517-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics