Advertisement

Experimental Epilepsy: Cerebro-Cerebellar Interactions and Antiepileptic Drugs

  • Robert M. Julien

Abstract

Epilepsy is a term used to describe the repeated occurrence of any of the various clinical forms of convulsive seizures. Convulsive seizures appear to be the normal mode of expression of cerebral cortex and subcortical structures to an excessive, overwhelming discharge originating in a variety of loci. The tonic extensor rigidity and clonic convulsive movements of the clinical grand mal attack result from involvement of motor cortex and the spread of excitation away from the abnormal focal discharge (Adrian, 1936). One fundamental problem in epilepsy involves identification of the mechanism underlying and controlling the “highly explosive” discharges described by Kughlings Jackson (1931) which characterize the cortical epileptic focus (Ward, 1969).

Keywords

Purkinje Cell Cerebellar Cortex Antiepileptic Action Dentate Nucleus Cortical Excitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADRIAN, E.D. The spread of activity in the cerebral cortex. J. Physiol. 88:127, 1936.PubMedGoogle Scholar
  2. AFIFI, A.K. & VAN ALLEN, M.W. Cerebellar atrophy in epilepsy. J. Neurol. Neurosurg. Psychiat. 31:169–174, 1968.PubMedCrossRefGoogle Scholar
  3. AJMONE-MARSAN, C. Acute effects of topical epileptogenic agents. In Jasper, Ward, & Pope (Eds.) “Basic Mechanisms of the Epilepsies”. Boston: Little, Brown & Co., 1969.Google Scholar
  4. AYALA, G.F., MATSUMOTO, H., & GUMNIT, R.J. Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol. 33:73–85, 1970.PubMedGoogle Scholar
  5. BABB, T.L., MITCHELL, A.G., & CRANDALL, P.N. (submitted). Fastigiobulbar and dentatothalamic influences on hippocampal epilepsy in the cat.Google Scholar
  6. BIGGER, J., BASSETT, A., & HOFFMAN, B. Electrophysiological effects of diphenylhydantoin on canine Purkinje fibers. Circulation Research, 22:221–236, 1968.PubMedGoogle Scholar
  7. BRUMLIK, J. & MORETTI, L. The effects of diphenylhydantoin on nerve conduction velocity. Neurology, 16:1217–1218, 1966.PubMedGoogle Scholar
  8. COOKE, P.M. & SNIDER, R.S. Some cerebellar influences on electrically-induced cerebral seizures. Epilepsia, 4:19–28, 1955.PubMedCrossRefGoogle Scholar
  9. COOPER, I.S., CRIGHEL, E., & AMIN, I. Clinical and physiological effects of stimulation of the paleocerebellum in humans. J. Amer. Geriatr. Soc. 21:40–43, 1973.Google Scholar
  10. DAM, M. Number of Purkinje cells in patients with Grand Mai Epilepsy treated with diphenylhydantoin. Epilepsia, 11:313–320, 1970.PubMedCrossRefGoogle Scholar
  11. DeCHAMPS, A., COLLE, G., HOZAY, J., & ROUSSEL, J. Anatomo-clinical documents on epilepsy. Acta Neurol. Belg. 58:105–129, 1958.Google Scholar
  12. DEN HERTOG, A. The effect of diphenylhydantoin on the electrogenic component of the sodium pump in mammalian non-myelinated nerve fibers. Europ. J. Pharmacol. 19:94–97, 1972.CrossRefGoogle Scholar
  13. DICHTER, M.A. & SPENCER, W.A. Hippocampal penicillin “spike” discharge: epileptic neuron or epileptic aggregate. Neurology, 18:282, 1968.PubMedGoogle Scholar
  14. DONDE, M. & SNIDER, R.S. On cerebellar stimulation. Electroenceph. clin. Neurophysiol. 7:265–272, 1955.CrossRefGoogle Scholar
  15. DOW, R.S. Extrinsic regulatory mechanisms of seizure activity. Epilepsia, 6:122–140, 1965.PubMedCrossRefGoogle Scholar
  16. DOW, R.S., FERNANDEZ-GUARDIOLA, A., & MANNI, E. The influence of the cerebellum on experimental epilepsy. Electroenceph. clin. Neurophysiol. 14:383–398, 1962.PubMedCrossRefGoogle Scholar
  17. ECCLES, J.C., ITO, M., & SZENTAGOTJAI, J. “The Cerebellum as a Neuronal Machine”. New York: Springer-Verlag, 1967.Google Scholar
  18. ESPLIN, D.W. Effects of diphenylhydantoin on synaptic transmission in cat spinal cord and stellate ganglion. J. Pharmacol, exp. Ther. 120:301–323, 1957.Google Scholar
  19. ESPLIN, D.W. & ZABLOCKA, B. Effects of tetanization on transmitter dynamics. Epilepsia, 10:193–210, 1969.PubMedCrossRefGoogle Scholar
  20. EVARTS, E.V. & THACH, W.T. Motor mechanisms of the CNS: cerebrocerebellar interrelations. Ann. Rev. Physiol. 31:451–498, 1969.CrossRefGoogle Scholar
  21. GABREELS, F.J.M. De Invloed van Phenytoine op de Purkinjecel van de Rat. Doctoral Dissertation, Catholic University of the Netherlands, 1970. Summarized in Epilepsy Abstracts 5:110, 1972.Google Scholar
  22. GANGLOFF, H. & MONNIER, M. The action of anticonvulsant drugs tested by electrical stimulation of the cortex, diencephalon, and rhinencephalon in the unanesthetized rabbit. Electroenceph. clin. Neurophysiol. 9:43–58, 1957.PubMedCrossRefGoogle Scholar
  23. GIACHETTI, A. Effect of phenytoin on the transmission of epileptic activity with special reference to dementi’s sensory epilepsy. Arch. Sci. Biol. 33:390–398, 1949.Google Scholar
  24. HABERLAND, C. Cerebellar degeneration with clinical manifestation in chronic epileptic patients. Psychiat. Neurol. 143:29–44, 1962.CrossRefGoogle Scholar
  25. HALPERN, L.M. & JULIEN, R.M. Augmentation of cerebellar Purkinje cell discharge rate after diphenylhydantoin. Epilepsia, 13:377–385, 1972.PubMedCrossRefGoogle Scholar
  26. HOBSON, J.A. & McCARLEY, R.W. Spontaneous discharge rates of cat cerebellar Purkinje cells in sleep and waking. Electroenceph. clin. Neurophysiol. 33:457–469, 1972.PubMedCrossRefGoogle Scholar
  27. HOFFMAN, W.W. Cerebellar lesions after Dilantin administration. Neurology, 8:210–214, 1958.Google Scholar
  28. HUNTER, J. & JASPER, H.H. Effects of thalamic stimulation in unanesthetized animals. Electroenceph. clin. Neurophysiol. 1:305–324, 1949.PubMedGoogle Scholar
  29. HUTTON, J.T., FROST, J.D., & FOSTER, J. The influence of the cerebellum in cat penicillin epilepsy. Epilepsia, 13:401–408, 1972.PubMedCrossRefGoogle Scholar
  30. ITO, M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurology, 7:162–176, 1970.Google Scholar
  31. ITO, M. & YOSHIDA, M. The cerebellar-evoked monosynaptic inhibition of De iters neurons. Epxerientia, 20:515–516, 1964.CrossRefGoogle Scholar
  32. IWATA, K. & SNIDER, R.S. Cerebello-hippocampal influences on the electroencephalogram. Electroenceph. clin. Neurophysiol. 11: 439–446, 1959.PubMedCrossRefGoogle Scholar
  33. JACKSON, J.H. “Selected Writings of John Hughlings Jackson”, Vol. I, on epilepsy and epileptiform convulsions. Ed. by J. Taylor, Hodder and Stoughton, London, 1931.Google Scholar
  34. JULIEN, R.M. Cerebellar involvement in the antiepileptic action of diazepam. Neuropharmacology, 11:683–691, 1972.PubMedCrossRefGoogle Scholar
  35. JULIEN, R.M. Carbamazepine (Tegretol): Correlation of blood levels with antiepileptic effects in acute and chronic epileptic cats and monkeys. (Submitted).Google Scholar
  36. JULIEN, R.M. & HALPERN, L.M. Stabilization of excitable membrane by chronic administration of diphenylhydantoin. J. Pharmacol, exp. Ther. 175:206–212, 1970.Google Scholar
  37. JULIEN, R.M. & HALPERN, L.M. Diphenylhydantoin: Evidence for a central action. Life Sciences, 10:575–582, 1971.CrossRefGoogle Scholar
  38. JULIEN, R.M. & HALPERN, L.M. Effects of diphenylhydantoin and other antiepileptic drugs on epileptiform activity and Purkinje cell discharge rate. Epilepsia, 13:387–400, 1972.PubMedCrossRefGoogle Scholar
  39. JULIEN, R.M. & LAXER, K.D. Cerebellar responses to penicillin-induced cerebral cortical epileptiform discharge. (Submitted).Google Scholar
  40. KANDEL, E. & SPENCER, W.A. Synaptic inhibition in seizures. In Jasper, Ward, & Pope (Eds.) “Basic Mechanisms of the Epilepsies”. Boston: Little, Brown & Co., 1969.Google Scholar
  41. KOKENGE, R., KUTT, H., & McDOWELL, F. Neurological sequelae following Dilantin overdose in a patient and in experimental animals. Neurology, 15:823–829, 1965.PubMedGoogle Scholar
  42. KOREY, S.R. Effect of Dilantin and Mesantoin on the giant axon of the squid. Proc. Soc. exp. Biol. Med. 76:297–299, 1951.PubMedGoogle Scholar
  43. KUSSKE, J.A., OJEMANN, G.A., & WARD, A.A., Jr. Effects of lesions in ventral anterior thalamus on experimental focal epilepsy. Exp. Neurol. 34:279–290, 1972.PubMedCrossRefGoogle Scholar
  44. LaGRUTTA, V., AMATO, G., & ZAGAMI, M.T. The importance of the caudate nucleus in the control of convulsive activity on the amygdaloid complex and the temporal cortex of the cat. Electroenceph. clin. Neurophysiol. 31:57–69, 1971.CrossRefGoogle Scholar
  45. LOUIS, S., KUTT, H., & McDOWELL, F. Intravenous diphenylhydantoin in experimental seizures. II. Effect on penicillin-induced seizures in the cat. Arch. Neurol. 18:472–477, 1968.PubMedGoogle Scholar
  46. MAHNKE, J.H., BABB, T.L., & VERZEANO, M. The action of cholinergic agents on the electrical activity of the non-specific nuclei of the thalamus. Proc. Amer. Assoc. Neurol. Surg., 1971.Google Scholar
  47. MATSUMOTO, H., AYALA, G.F., & GUMNIT, R.J. Neuronal behavior and triggering mechanisms in cortical epileptic focus. J. Neurophysiol. 32:688–703, 1969.PubMedGoogle Scholar
  48. MERRITT, H.H. & PUTNAM, T.J. Sodium diphenylhydantoinate in the treatment of convulsive disorders. J.A.M.A. 111:1068–1073, 1938.Google Scholar
  49. MITCHELL, A.G., BABB, T.L., & CRANDALL, P.H. Influence of a dentate-thalamic pathway on experimental hippocampal epilepsy. Electroenceph. clin. Neurophysiol. (in press)Google Scholar
  50. MORRELL, F., BRADLEY, W., & PTASHNE, M. Effect of drugs on discharge characteristics of chronic epileptiform lesions. Neurology, 9:492–498, 1959.PubMedGoogle Scholar
  51. MUTANI, R., BERGAMINI, L., & DORIGUSSI, T. Experimental evidence for the existence of an extrarhinencephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part 2, Effect of paleocerebellar stimulation. Epilepsia, 10:351–362, 1969.PubMedCrossRefGoogle Scholar
  52. POMPEIANO, O. Sleep Mechanisms. In Jasper, H.H., Ward, A.A. & Pope, A. (Eds.) “Basic Mechanisms of the Epilepsies”. Boston: Little, Brown, & Co., 1969.Google Scholar
  53. PRINCE, D.A. Inhibition in “epileptic” neurons. Exptl. Neurol. 21: 307–321, 1968.CrossRefGoogle Scholar
  54. PRINCE, D.A. Electrophysiology of “epileptic” neurons: Spike generation. Electroenceph. clin. Neurophysiol. 26:476, 1969.Google Scholar
  55. RAINES, A. & STANDAERT, F.G. An effect of diphenylhydantoin on post-tetanic hyperpolarization of intramedullary nerve terminals. J. Pharmacol, exp. Ther. 156:591–597, 1967.Google Scholar
  56. ROGER, J. & SOULAYROL, R. A propos des accidents neurologiques du traitement de I’epilepsie par les hydantoines. Rev. Neurol. 100:783–785, 1959.PubMedGoogle Scholar
  57. SNIDER, R.S., MITRA, D.J., & SUDILOUSKY, A. Cerebellar effects on the cerebrum. Int. J. Neurology, 7:141–151, 1970.Google Scholar
  58. STROBOS, R.J. & SPUDID, E.V. Effect of anticonvulsant drugs on cortical and subcortical seizure discharges in cats. Arch. Neurol. 2:399–406, 1960.PubMedGoogle Scholar
  59. TERZUOLO, C. Influences supraspinous sur le tetanos strychnique de la moelle elineire. Arch. int. Physiol. 62:179–196, 1954.PubMedGoogle Scholar
  60. THACH, W.T. Cerebellar output: Properties, synthesis and uses. Brain Research, 40:89–97, 1972.PubMedCrossRefGoogle Scholar
  61. TOMAN, J.E.P. Neuropharmacology of peripheral nerve. Pharmacol. Rev. 4:168–218, 1952.PubMedGoogle Scholar
  62. TOMAN, J.E.P. & SABELLI, H.C. Comparative neuronal mechanisms. Epilepsia, 10:179–192, 1969.PubMedCrossRefGoogle Scholar
  63. UTTERBACK, R.A., OJEMAN, R., & MALEK, J. Parenchymatous cerebellar degeneration with dilantin intoxication. J. Neuropath, exp. Neurol. 17:516–519, 1958.Google Scholar
  64. WARD, A.A.J. The epileptic neuron: Chronic foci in animals and man. In Jasper, Ward, & Pope (Eds.) “Basic Mechanisms of the Epilepsies”. Boston: Little, Brown, &Co., 1969.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Robert M. Julien
    • 1
  1. 1.Department of Medical Pharmacology and TherapeuticsUniversity of California at IrvineIrvineUSA

Personalised recommendations