New Forms of Ultrasonic and Radar Imaging

  • Winston E. Kock

Abstract

Recent developments in synthetic aperture techniques to be described, which are applicable to both ultrasonic and radar imaging, include: a solution to the ambiguity problem, creating end-fire gain and synthetic gain against moving targets for both monostatic and bistatic systems. Other subjects to be discussed include acoustic kinoforms, real-time holographic detection of concealed weapons, synthetic aperture hologram interferometry, and new developments in (1) real-time imaging with sonar arrays comprising thousands of elements, and (2) seismic imaging.

Keywords

Microwave Radar Coherence Azimuth Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Kock and F. K. Harvey, “Sound Wave and Microwave Space Patterns,” Bell System Technical Journal, Vol. 20, No. 7, pp. 564–587, (July, 1951).Google Scholar
  2. 2.
    W. E. Kock, “Real Time Detection of Metallic Objects Using Liquid Crystal Microwave Holograms,” Proc. IEEE, (Lett), November, 1972.Google Scholar
  3. 3.
    Lord Rayleigh, “Theory of Sound,” Dover, Vol. 2, p. 142, (1945).MATHGoogle Scholar
  4. 4.
    “Photographing Sound Waves,” Bell Laboratories Record, July 1950, pp. 304–306.Google Scholar
  5. 5.
    A. F. Metherell and S. Spinak, “Acoustical Holography of Non-Existent Wavefronts Detected at a Single Point in Space,” App. Phys. Lett. 13–22, (1968).Google Scholar
  6. 6.
    V. L. Neeley, “Source Scanning Holography,” Phys. Lett. 28A (7); pp. 475–476, (1968).ADSGoogle Scholar
  7. 7.
    “Holographic Movies,” Laser Focus, 1, No. 17, 1965, pp. 8–9.Google Scholar
  8. 8.
    H. Kiemle and D. Ross, “Einfauhrung in die Technik der Holographie,” Akademische Verlagsgesellschaft, 1969, p. 17.Google Scholar
  9. 9.
    E. Camatini, Editor, Optical and Acoustical Holography, Plenum Press, 1972, p. 11.Google Scholar
  10. 10.
    D. Gabor, “The Hologram,” Fri. Evening Discourse, Feb. 7, 1969, Proc. Royal Institution Great Britain, 43, No. 200.Google Scholar
  11. 11.
    L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, “Optical Data Processing and Filtering,” IRE Trans. Prof. Group on Infor. Theory, Vol. IT6, No. 3, pp. 386–400, 1960.MathSciNetGoogle Scholar
  12. 12.
    L. J. Cutrona, E. N. Leith, L. J. Porcello, and W. E. Vivian, “On the Application of Coherent Optical Processing Techniques to Synthetic-Aperture Radar,” Proc. IEEE, Vol. 54, pp. 1026–1032, Aug., 1966.CrossRefGoogle Scholar
  13. 13.
    W. E. Kock, “Acoustics and Optics,” (Introductory guest-editor paper), Applied Optics, Vol. 8, No. 8, August 1969, pp. 1525–1530.ADSCrossRefGoogle Scholar
  14. 14.
    W. E. Kock, “Holography and Microwaves,” presented at the U.S.-Japan Seminar on Holography, Tokyo, Japan, Oct. 5, 1967.Google Scholar
  15. 15.
    W. E. Kock, “Side-Looking Radar, Holography, and Doppler-Free Coherent Radar,” Proc. IEEE, Vol. 56, pp. 238–239, Feb., 1968.CrossRefGoogle Scholar
  16. 16.
    E. N. Leith and A. L. Ingalls, “Synthetic Antenna Data Processing by Wavefront Reconstruction,” Appl. Opt., Vol. 7, Mar. 1968, pp. 539–544.ADSCrossRefGoogle Scholar
  17. 17.
    W. E. Kock, “Extending the Maximum Range of Synthetic Aperture (Hologram) Systems,” to appear in the Proc. IEEE(Lett.).Google Scholar
  18. 18.
    W. E. Kock, “Stationary Coherent (Hologram) Radar and Sonar,” Proc. IEEE, Vol. 56, No. 12, December 1968, p. 2180.CrossRefGoogle Scholar
  19. 19.
    W. M. Brown and L. J. Porcello, “An Introduction to Synthetic Aperture Radar,” IEEE Spectrum, September1969, pp. 52–62.Google Scholar
  20. 20.
    W. E. Kock, “Holography, A New Dimension for Radar,” Electronics, Vol. 43, No. 21, Oct. 12, 1970, pp. 80–88.Google Scholar
  21. 21.
    W. E. Kock, “Radar and Microwave Applications of Holography,” pp. 323–356, in Applications of Holography, New York, Plenum Press, 1971.Google Scholar
  22. 22.
    E. N. Leith, “Quasi-Holographic Techniques in the Microwave Region,” Proc. IEEE, Vol. 59, No. 9, September 1971, pp. 1305–1318.CrossRefGoogle Scholar
  23. 23.
    W. E. Kock, “Holographic Computing in Radar and Ultrasonics,” (Invited Paper), Proc. of the Optical Computing Symposium, Darien, Connecticut, April 12, 1972.Google Scholar
  24. 24.
    G. L. Rogers, “A New Method of Analyzing Ionospheric Movement Records,” Nature, March 31, 1956, pp. 613–614.ADSCrossRefGoogle Scholar
  25. 25.
    G. L. Tyler, “The Bistatic, Continuous-Wave Radar Method for the Study of Planetary Surfaces,” Journal of Geophysics Research, Vol. 71, No. 6, pp. 1559–1567, March 15, 1966.ADSGoogle Scholar
  26. 26.
    J. J. Flaherty, K. R. Erikson, and Van Metre Lund, “Synthetic Aperture Ultrasonic Imaging Systems,” U.S. Patent No. 3,548,642, December 22, 1970 (filed March 2, 1967).Google Scholar
  27. 27.
    W. E. Kock, “Nobel Prize for Physics: Gabor and Holography,” Science, Vol. 174, Nov. 12, 1971, pp. 674–675.ADSCrossRefGoogle Scholar
  28. 28.
    W. E. Kock, “Holographic Techniques in Continuous-Wave Bistatic Radars,” Proc. IEEE, (Lett.), Vol. 58, Nov.1970, pp. 1863–1864.Google Scholar
  29. 29.
    W. E. Kock, “Synthetic End-Fire Hologram Radar,”Proc. IEEE, (Lett.), Vol. 58, Nov. 1970, pp. 1858–1859.ADSCrossRefGoogle Scholar
  30. 30.
    W. E. Kock, “A Holographic (Synthetic Aperture) Method for Increasing the Gain of Ground-to-Air Radars,” Proc. IEEE, (Lett.), Vol. 59, No. 3, March, 1970,pp. 426–427.Google Scholar
  31. 31.
    D. F. Pekau and R. Diehl, “Recording of One Dimensional Holograms as a Function of Object Range,” presented at the Int. Symp. Applications of Holography, Besancon, France, July 6–11, 1970.Google Scholar
  32. 32.
    B. P. Parkins and G. R. Fox, “Measurement of the Coherence and Fading of Long-Range Signals,” I.E.E.E. Transactions on Audio & Electro-Acoustics, Vol. AV-19, June 1971, pp. 158–165.Google Scholar
  33. 33.
    R. H. Nichols and H. J. Young, “Fluctuations in Low- Frequency Acoustic Propagation in the Ocean,” Jour. Acout. SJC. Am., Vol. 43, April, 1968, pp. 716–723.ADSCrossRefGoogle Scholar
  34. 34.
    B. R. Brown and A. W. Lohmann, “Complex Spatial Filtering and Binary Masks,” Applied Optics 5, p. 967, (1966).ADSCrossRefGoogle Scholar
  35. 35.
    A. W. Lohmann and D. Paris, “Binary Fraunhofer Holograms Generated by a Computer,” Applied Optics 6,p. 1739, (1967).ADSCrossRefGoogle Scholar
  36. 36.
    B. R. Brown and A. W. Lohmann, “Computer-Generated Binary Holograms,” I.B.M. Jour. Res, and Dev., Vol. 13, p. 130, (1969).Google Scholar
  37. 37.
    L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., “The Kinoform: A New Wavefront Reconstruction Device,” IBM J. Research & Dev., Vol. 13, 1969, pp. 150–155.CrossRefGoogle Scholar
  38. 38.
    J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, Applied Optics, Vol. 9, Aug., 1970.Google Scholar
  39. 39.
    W. E. Kock, ;Metal Lens Antennas, Proc. of IRE, Vol. 34, p. 828, (1946).CrossRefGoogle Scholar
  40. 40.
    W. E. Kock, Internal Bell Telephone Laboratories Memorandum, M.M. 44–160-67, “Experiments with Metal Plate Lenses for Microwaves,” March 27, 1944, (Secret; since declassified).Google Scholar
  41. 41.
    W. E. Kock, Applied Optics, July 1972, pp. 1653–1654.Google Scholar
  42. 42.
    A. L. Boyer, P. M. Hirsch-, J. A. Jordan, Jr., L. B. Lesem, and D. L. Van Rooy, Kinoform Mirror for Acoustic Imaging, I.B.M. Publication No. 2220–6100, June 18, 1970.Google Scholar
  43. 43.
    B. P. Hildebrand and K. A. Haines, “Interferometric Measurements Using the Wavefront Reconstruction Tech-nique,” Applied Optics, Vol. 5, pp. 172–173, January 1966.ADSCrossRefGoogle Scholar
  44. 44.
    L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic Interferometry,” J. Applied Physics, Vol. 37, pp. 642–649, February, 1966.ADSCrossRefGoogle Scholar
  45. 45.
    K. A. Stetson and R. L. Powell, “Hologram Interfero-metry,” Journal Opt. Soc. Am., Vol. 56, No. 9, Sept. 1966.Google Scholar
  46. 46.
    J. A. Haines and B. P. Hildebrand, Jour. Opt. Soc. Am., Vol. 57, 1967, p. 55.Google Scholar
  47. 47.
    G. M. Brown, R. M. Grant, and G. W. Stroke, Jour. Opt. Soc. Am., May 1969, pp. 1166–1179.Google Scholar
  48. 48.
    G. Papi, V. Russo, and S. Sottini, “Microwave Holographic Interfero-metry,” IEEE Transactions on Antennas and Propagation, Vol. AP-19, No. 6, November 1971,pp. 740–746.ADSCrossRefGoogle Scholar
  49. 49.
    G. Papi, V. Russo, and S. Sottini, Two-Frequency Microwave Holographic Interferometry, Proc. IEEE(Lett.), Vol. 60, No. 8, Aug., 1972, pp. 1004–1005.Google Scholar
  50. 50.
    W. E. Kock, “Holographic Synthetic Aperture Interferometry,” to appear shortly in the Proc. IEEE(Lett.).Google Scholar
  51. 51.
    E. Marom, R. K. Mueller, R. F. Koppelmann, and G. Zilinskas, “Design and Preliminary Test of an Underwater Viewing System Using Sound Holography,” Acoustical Holography, Vol. 3, New York, Plenum, 1971.Google Scholar
  52. 52.
    G. G. Goetz, “Real-Time Holographic Reconstruction by Electro-Optic Modulation,” Applied Optics Letters, Vol. 17, No. 2, July 15, 1970, pp. 63–66.ADSCrossRefGoogle Scholar
  53. 53.
    G. G. Goetz, R. F. Koppelmann and R. K. Mueller, “RealTime Reconstruction and Display of Acoustic Holograms for an Underwater Viewing System,” Proceedings of the Electro-Optic Systems Design Conference, East, pp. 202–208, September, 1971.Google Scholar
  54. 54.
    M. B. Dobrin, A. L. Ingalls, and J. A. Long, “Velocity and Frequency Filtering of Seismic Data Using Laser Light,” Geophysics 30(No. 6), pp. 1144–1178, December, 1965.ADSCrossRefGoogle Scholar
  55. 55.
    D. Silverman, “Wavelet Reconstruction Process for Sonic, Seismic, and Radar Explorations,” U.S. Patent 3,400,363 (September 3, 1968).Google Scholar
  56. 56.
    W. E. Lerwill, “Holography at Seismic Frequencies,” presented at the European Association Exploration Geophysical Conference, Venice, Italy, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Winston E. Kock
    • 1
    • 2
  1. 1.The University of CincinnatiCincinnatiUSA
  2. 2.The Bendix CorporationUSA

Personalised recommendations