Advertisement

Electrochemical Techniques

  • D. M. MacArthur

Abstract

Electrode processes, by definition, occur at an interface. It follows that electrochemical measurements on electrodes are affected by surface conditions and tell something about the state of the surface. Electrochemical measurements, however, require an electrolyte on one side of the interface, and high potential gradients across this region may occur (≈ 106 V/cm). the surface can be materially different from that in equilibrium at the solid-gas interface as a result of rearrangement of surface atoms and adsorption from solution of ions or molecules in the electrolyte. There have been few attempts, for this reason, to use electrochemical methods to obtain knowledge about the solid-gas interface. There are many practical situations where a knowledge of the solid-electrolyte interface is desired, however, and it is in these situations where the techniques discussed in this chapter may be of value.

Keywords

Electrochemical Technique Potential Sweep Faradaic Reaction Faradaic Process Surface Active Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Srinivasan and P. N. Sawyer, in Clean Surfaces: Their Preparation and Characterization for Interfacial Studies (George Goldfinger, ed.) pp. 195–218, Marcel Dekker, New York (1970).Google Scholar
  2. 2.
    P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York (1954).Google Scholar
  3. 3.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York (1970).CrossRefGoogle Scholar
  4. 4.
    R. Parsons, in Modern Aspects in Electrochemistry, Vol. 1 (J. O’M. Bockris, ed.) pp. 103–180, Academic Press, New York (1954).Google Scholar
  5. 5.
    H. U. Harten, The semiconductor-electrolyte interface, Electrochim. Acta 13, 1255–1261 (1968).CrossRefGoogle Scholar
  6. 6.
    M. Green, in Modern Aspects of Electrochemistry, Vol. 2 (J. O’M. Bockris, ed.) pp. 343–407, Academic Press, New York (1959).Google Scholar
  7. 7.
    V. A. Myamlin and Y. V. Pleskov, Electrochemistry of Semiconductors, Plenum Press, New York (1967).Google Scholar
  8. 8.
    S. Bruckenstein and B. Miller, Circuit for transient—free current—potential control conversion, J. Electrochem. Soc. 117, 1040–1044 (1970).CrossRefGoogle Scholar
  9. 9.
    D. R. Flinn, M. Rosen, and S. Schuldiner, Double layer capacitance on platinum, Collection Czechoslov. Chem. Commun. 36, 454–463 (1971).CrossRefGoogle Scholar
  10. 10.
    A. A. Pilla, R. B. Roe, and C. C. Herrmann, High speed non-faradaic resistance compensation in potentiostatic techniques, J. Electrochem. Soc. 116, 1105–1112 (1969).CrossRefGoogle Scholar
  11. 11.
    N. Tshernikovski and E. Gileadi, New techniques for double layer capacitance measurements at solid metal electrodes, Electrochim. Acta 16, 579–584 (1971).CrossRefGoogle Scholar
  12. 12.
    D. E. Aspnes, A capacitive divider technique for fast interface capacitance measurement, J. Electrochem. Soc. 116, 585–591 (1969).CrossRefGoogle Scholar
  13. 13.
    R. Woods, The surface composition of platinum-gold alloys, Electrochim. Acta 16, 655–659 (1971).CrossRefGoogle Scholar
  14. 14.
    P. Delahay, Coulostatic method for the kinetic study of fast electrode processes, J. Phys. Chem. 66, 2204–2207 (1962).CrossRefGoogle Scholar
  15. 15.
    R. A. Fredlein, A. Damjanovic, and J. O’M. Bockris, Differential surface tension measurements at thin solid metal electrodes, Surface Sci. 25, 261–264 (1971).CrossRefGoogle Scholar
  16. 16.
    T. R. Beck, “Electrocapillary curves” of solid metals measured by extensometer instrumentation, J. Phys. Chem. 73, 466–468 (1969).CrossRefGoogle Scholar
  17. 17.
    D. E. Icenhower, H. B. Urback, and J. H. Harrison, Use of the potential step method to measure surface oxides, J. Electrochem. Soc. 117, 1500–1506 (1970).CrossRefGoogle Scholar
  18. 18.
    J. J. McMullen and N. Hackerman, Capacities of solid metal-solution interfaces, J. Electrochem. Soc. 106, 341–346 (1959).CrossRefGoogle Scholar
  19. 19.
    R. G. Barradas and E. M. L. Valeriote, On the electrical analog circuit for the study of metal-solution interfaces by the square wave technique for capacitance measurements, J. Electrochem. Soc. 117, 650–651 (1970).CrossRefGoogle Scholar
  20. 20.
    K. Sasaki and Y. Nishigakiuchi, Cathodic reduction of adsorbed oxygen on platinum, Electrochim. Acta 16, 1099–1106 (1971).CrossRefGoogle Scholar
  21. 21.
    D. A. J. Rand and R. Woods, The nature of adsorbed oxygen on rhodium, palladium, and gold electrodes, J. Electroanal. Chem. 31, 29–38 (1971).CrossRefGoogle Scholar
  22. 22.
    S. Gilman, Adsorption of cadmium ions from KOH solution at a platinum electrode, J. Electrochem. Soc. 118, 1953–1957 (1971).CrossRefGoogle Scholar
  23. 23.
    J. F. Connolly, R. J. Flannery, and G. Aronowitz, Electrochemical measurement of the available surface area of carbon supported platinum, J. Electrochem. Soc. 113, 577–580 (1966)CrossRefGoogle Scholar
  24. 24.
    M. W. Breiter, Hydrogen adsorption on heterogeneous platinum-gold alloys in sulphuric acid solution. Trans. Faraday Soc. 61, 749–754 (1965).CrossRefGoogle Scholar
  25. 25.
    M. W. Breiter, Electrochemical characterization of the surface composition of heterogeneous platinum-gold alloys, J. Phys. Chem. 69, 901–904 (1965).CrossRefGoogle Scholar
  26. 26.
    M. W. Breiter and F. E. Luborsky, Identification of gold islands on copper plated wire surfaces by cyclic voltammetry, J. Electrochem. Soc. 118, 867–869 (1971).CrossRefGoogle Scholar
  27. 27.
    R. Woods, Electrolytically co-deposited platinum-gold electrodes and their electrocatalytic activity for acetate ion oxidation, Electrochim. Acta 14, 533–540 (1969).CrossRefGoogle Scholar
  28. 28.
    G. Todd and G. A. Wild, Novel technique for surface analysis of solid metallic specimens using selected anodic current-voltage characteristics, Anal. Chem. 43, 476–480 (1971).CrossRefGoogle Scholar
  29. 29.
    R. M. Latanision and H. Opperhauser, on the Passivation of Nickel Monocrystal Surfaces, RIAS Tech Report 71-16c (August 1971), paper presented at N.A.C.E. Corrosion Research Conference, Chicago (March 23, 1971).Google Scholar
  30. 30.
    S. Schuldiner, M. Rosen, and D. R. Flinn, Comparative activity of (111),(100),(110), and polycrystalline platinum electrodes in H2 saturated 1 m H2SO4 under potentiostatic control, J. Electrochem. Soc. 117, 1251–1259 (1970).CrossRefGoogle Scholar
  31. 31.
    L. Karasyk and H. B. Linford, Electrode kinetic parameters for copper deposition on clean and soiled copper cathodes, J. Electrochem. Soc. 110, 895–904 (1963).CrossRefGoogle Scholar
  32. 32.
    H. Schneider, A. J. Sukava, and W. J. Newby, Cathode overpotential and surface active additives in the electrodeposition of copper, J. Electrochem. Soc. 112, 568–570 (1965).CrossRefGoogle Scholar
  33. 33.
    A. J. Sukava, H. Schneider, D. J. McKenney, and A. T. McGregor, Cathode overpotential and surface active additives in the electrodeposition of copper, J. Electrochem. Soc. 112, 571–573 (1965).CrossRefGoogle Scholar
  34. 34.
    M. A. Farrell and H. B. Linford, Cleaning and preparation of metals prior to electroplating, Plating 53, 1110–1114 (1966).Google Scholar
  35. 35.
    D. O. Feder and E. S. Jacob, Electrode potential: A tool for the control of materials and processes in electron device fabrication, ASTM STP No. 300, 53–66 (1961).Google Scholar
  36. 36.
    D. G. Schimmel, Detection of inorganic contamination on surfaces by an EMF measurement, ASTM STP No. 300, 46–52 (1961).Google Scholar
  37. 37.
    H. Gobrecht and R. Blaser, On the mechanism of surface recombination at semiconductor electrodes, Electrochim. Acta 13, 1285–1292 (1968).CrossRefGoogle Scholar
  38. 38.
    H. Gerischer, in discussion of the paper, Charge transfer processes at semiconductor-electrolyte interface in connection with problems of catalysis, Surface Sci. 18, 97–122 (1969).CrossRefGoogle Scholar
  39. 39.
    P. J. Boddy, Impedance measurements at the semiconductor-electrolyte interface, Surface Sci. 13, 52–59 (1969).CrossRefGoogle Scholar
  40. 40.
    P. J. Boddy, The structure of the semiconductor-electrolyte interface, J. Electroanal. Chem. 10, 199–244 (1965).Google Scholar
  41. 41.
    H. Gerischer, Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems in catalysis, Surface Sci. 18, 97–122 (1969).CrossRefGoogle Scholar
  42. 42.
    W. P. Gomes and F. Cardon, Surface states at the single crystal zinc oxide-electrolyte interface, Ber. Bunsenges Phys. Chem. 74, 431–436 (1970).Google Scholar
  43. 43.
    S. R. Morrison, Electron capture by ions at the ZnO-solution interface, Surface Sci. 15, 363–379 (1969).CrossRefGoogle Scholar
  44. 44.
    V. A. Tyagai and G. Ya. Kolbasov, The contribution of surface states to the charge transport process across CdS, CdSe-electrolyte interface, Surface Sci. 28, 423–436 (1971).CrossRefGoogle Scholar
  45. 45.
    R. L. Meek, n+ silicon-electrolyte interface capacitance, Surface Sci. 25, 526–536 (1971).CrossRefGoogle Scholar
  46. 46.
    R. Memming, On the interpretation of the impedance of the semiconductor-electrolyte interface, Philips Res. Repts. 19, 323–332 (1964).Google Scholar
  47. 47.
    P. J. Boddy, D. Kahng, and Y. S. Chen, Oxygen evolution on potassium tantalate anodes, Electrochim. Acta 13, 1311–1328 (1968).CrossRefGoogle Scholar
  48. 48.
    P. J. Boddy, Oxygen evolution on semiconducting TiO2, J. Electrochem. Soc. 115, 199–203 (1968).CrossRefGoogle Scholar
  49. 49.
    H. A. Laitinen, C. A. Vincent, and T. M. Bednarski, Behavior of tin oxide semiconducting electrodes under conditions of linear potential scan, J. Electrochem. Soc. 115, 1024–1028 (1968).CrossRefGoogle Scholar
  50. 50.
    S. Schuldiner, B. J. Piersma, and T. B. Warner, Potential of a platinum electrode at low partial pressures of hydrogen and oxygen, J. Electrochem. Soc. 113, 573–577 (1966).CrossRefGoogle Scholar
  51. 51.
    D. J. G. Ives and G. J. Janz, Reference Electrodes, Academic Press, New York (1961).Google Scholar
  52. 52.
    W. M. Schwarz and I. Shain, Generalized circuits for electroanalytical instrumentation, Anal. Chem. 35, 1770–1778 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • D. M. MacArthur
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations