Skip to main content

X-Ray Diffraction Methods

  • Chapter

Abstract

The application of x-ray diffraction to surface characterization requires some consideration of the definition of the material surface. If it is the present-day surface definition of one, five, or twenty monolayers that the ion-scattering, Auger, or ESCA techniques see, then x-ray diffraction probably has no place in surface characterization. However, by returning to the definition used a decade ago, where the first 5–10 K Å of a bulk material or any thin film deposited upon a substrate was considered the material surface, then x-ray diffraction does have an important application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, Mass. (1956).

    Google Scholar 

  2. C. G. Darwin, Phil. Mag. 43, 800 (1922).

    CAS  Google Scholar 

  3. International Tables for X-ray Crystallography, Vol. III, p. 157, Kynoch Press, Birmingham (1962).

    Google Scholar 

  4. R. W. James, Solid-State Physics, No. 15, p. 53, Academic Press, New York (1963).

    Google Scholar 

  5. G. A. Walker, J. Vac. Sci. Tech. 1, 465 (1970).

    Article  Google Scholar 

  6. A. Taylor, X-ray Metallography, p. 667, John Wiley & Sons, New York (1961).

    Google Scholar 

  7. C. N. J. Wagner, in Local Atomic Arrangements Studied by X-Ray Diffraction (J. B. Cohen and T. E. Hilliard, eds.) Chapter 6, Gordon and Breach, New York (1965).

    Google Scholar 

  8. B. E. Warren, Progr. Metal Phys. 8, 147 (1959).

    Article  CAS  Google Scholar 

  9. W. A. Rachinger, J. Sci. Instr. 25, 254 (1948).

    Article  Google Scholar 

  10. A. R. Stokes, Proc. Phys. Soc. (London) 61, 382 (1948).

    Article  CAS  Google Scholar 

  11. C. N. J. Wagner and E. N. Aqua, Adv. X-Ray Anal. 7, 46 (1964).

    Article  CAS  Google Scholar 

  12. R. Feder and B. S. Berry, J. Appl. Cryst. 3, 372 (1970).

    Article  CAS  Google Scholar 

  13. G. Wasserman and J. Wiewiorowsky, Z. Metallk. 44, 567 (1963).

    Google Scholar 

  14. A. Segmuller, Z. Metallk. 48, 448 (1957).

    CAS  Google Scholar 

  15. W. Parrish and M. Mack, Acta Cryst. 23, 687 (1967).

    Article  CAS  Google Scholar 

  16. M. Mack and W. Parrish, Acta Cryst. 23, 693 (1967).

    Article  CAS  Google Scholar 

  17. D. A. Brine and R. A. Young, Vacuum Technology Transactions: Proceedings of the Seventh National Symposium of the American Vacuum Society, pp. 250–259, Pergamon Press, New York (1963).

    Google Scholar 

  18. D. A. Brine and R. A. Young, Phil. Mag. 8, 651 (1963).

    Article  CAS  Google Scholar 

  19. T. C. Furnas, Jr., Single Crystal Orienter Manual, General Electric, Milwaukee (1957).

    Google Scholar 

  20. G. Freidel, Compt. Rend. 157, 1533 (1913).

    Google Scholar 

  21. R. W. James, Optical Principles of X-Ray Diffraction, Bell, London (1950).

    Google Scholar 

  22. W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals, John Wiley & Sons, New York (1945).

    Google Scholar 

  23. C. W. Bunn, Chemical Crystallography, Clarendon, Oxford (1961).

    Google Scholar 

  24. E. P. Warekois and P. H. Metzger, J. Appl. Phys. 30, 960 (1959).

    Article  CAS  Google Scholar 

  25. H. Cole and N. R. Stemple, J. Appl. Phys. 33, 2227 (1962).

    Article  CAS  Google Scholar 

  26. P. B. Hirsch, Proc. Metal Phys. 6, 236 (1956).

    Article  CAS  Google Scholar 

  27. B. W. Batterman, J. Appl. Phys. 30, 508 (1959).

    Article  CAS  Google Scholar 

  28. K. S. Chandrasekaran, Acta Cryst. 12, 916 (1959).

    Article  CAS  Google Scholar 

  29. W. Berg, Naturwiss. 19, 391 (1931).

    Article  CAS  Google Scholar 

  30. W. Berg, Z. Krist. 89, 286 (1934).

    CAS  Google Scholar 

  31. C. S. Barrett, Trans. AIME 161, 15 (1945).

    Google Scholar 

  32. J. B. Newkirk, Trans. AIME 215, 483 (1959).

    CAS  Google Scholar 

  33. A. R. Lang, Acta Met. 5, 358 (1957).

    Article  CAS  Google Scholar 

  34. A. R. Lang, Brit. J. Appl. Phys. 14, 904 (1963).

    Article  Google Scholar 

  35. G. Borrman, W. Hartwig, and H. Irmler, Z. Naturforsch. 13A, 423 (1958).

    Google Scholar 

  36. E. S. Meieran, Siemens Rev. XXXVII, 39 (1970).

    Google Scholar 

  37. J. K. Howard and R. D. Dobrott, Appl. Phys. Letters 1, 101 (1965).

    Article  Google Scholar 

  38. J. K. Howard and R. D. Dobrott, J. Elec. Chem. Soc. 113, 567 (1966).

    Article  CAS  Google Scholar 

  39. E. W. Williams, R. H. Cox, R. D. Dobrott, and C. E. Jones, Electrochem. Tech. 4, 479(1966).

    CAS  Google Scholar 

  40. A. Guinier and J. Tennevin, J. Acta Cryst. 2, 133 (1949).

    Article  CAS  Google Scholar 

  41. L. G. Shultz, Trans. AIME 201, 1082 (1954).

    Google Scholar 

  42. C. T. Wei and P. A. Beck, J. Appl. Phys. 12, 1508 (1956).

    Article  Google Scholar 

  43. R. A. Coyle, A. M. Marshall, J. H. Auld, and N. A. McKinnon, Brit. J. Appl. Phys. 8, 79 (1957).

    Article  CAS  Google Scholar 

  44. P. J. Holmes, J. Appl. Phys. 6, 180 (1955).

    Google Scholar 

  45. L. N. Swink and M. J. Brau, Met. Trans. 1, 629 (1970).

    Article  CAS  Google Scholar 

  46. H. Kiessig, Ann. Physik. 10, 715 (1931).

    Article  CAS  Google Scholar 

  47. Y. Yoneda, Phys. Rev. 131, 2010 (1963).

    Article  Google Scholar 

  48. B. E. Warren and J. S. Clark, J. Appl. Phys. 36, 324 (1965).

    Article  Google Scholar 

  49. O. J. Guentert, Phys. Rev. 138, A732 (1965).

    Article  Google Scholar 

  50. R. L. Mozzi and O. J. Guentert, Rev. Sci. Instr. 35, 75 (1964).

    Article  Google Scholar 

  51. G. Borrmann, Physik Z. 42, 157 (1941).

    CAS  Google Scholar 

  52. J. Sauro, I. Fankuchen, and N. Wainfan, Phys. Rev. 132, 1544 (1963).

    Article  Google Scholar 

  53. D. S. Kapp and N. Wainfain, Phys. Rev. 138, A1490 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Dobrott, R.D. (1974). X-Ray Diffraction Methods. In: Kane, P.F., Larrabee, G.B. (eds) Characterization of Solid Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4490-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4490-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4492-6

  • Online ISBN: 978-1-4613-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics